mirror of
https://github.com/donnaskiez/ac.git
synced 2024-11-21 22:24:08 +01:00
1431 lines
36 KiB
C
1431 lines
36 KiB
C
#include "modules.h"
|
|
|
|
#include "callbacks.h"
|
|
#include "driver.h"
|
|
|
|
#define WHITELISTED_MODULE_TAG 'whte'
|
|
|
|
#define NMI_DELAY 200 * 10000
|
|
|
|
#define WHITELISTED_MODULE_COUNT 11
|
|
#define MODULE_MAX_STRING_SIZE 256
|
|
|
|
#define NTOSKRNL 0
|
|
#define CLASSPNP 1
|
|
#define WDF01000 2
|
|
|
|
/*
|
|
* The modules seen in the array below have been seen to commonly hook other drivers'
|
|
* IOCTL dispatch routines. Its possible to see this by using WinObjEx64 and checking which
|
|
* module each individual dispatch routine lies in. These modules are then addded to the list
|
|
* (in addition to either the driver itself or ntoskrnl) which is seen as a valid region
|
|
* for a drivers dispatch routine to lie within.
|
|
*/
|
|
CHAR WHITELISTED_MODULES[WHITELISTED_MODULE_COUNT][MODULE_MAX_STRING_SIZE] =
|
|
{
|
|
"ntoskrnl.exe",
|
|
"CLASSPNP.SYS",
|
|
"Wdf01000.sys",
|
|
"HIDCLASS.SYS",
|
|
"storport.sys",
|
|
"dxgkrnl.sys",
|
|
"ndis.sys",
|
|
"ks.sys",
|
|
"portcls.sys",
|
|
"rdbss.sys",
|
|
"LXCORE.SYS"
|
|
};
|
|
|
|
#define MODULE_REPORT_DRIVER_NAME_BUFFER_SIZE 128
|
|
|
|
#define REASON_NO_BACKING_MODULE 1
|
|
#define REASON_INVALID_IOCTL_DISPATCH 2
|
|
|
|
#define SYSTEM_IDLE_PROCESS_ID 0
|
|
#define SYSTEM_PROCESS_ID 4
|
|
#define SVCHOST_PROCESS_ID 8
|
|
|
|
typedef struct _WHITELISTED_REGIONS
|
|
{
|
|
UINT64 base;
|
|
UINT64 end;
|
|
|
|
}WHITELISTED_REGIONS, * PWHITELISTED_REGIONS;
|
|
|
|
typedef struct _NMI_POOLS
|
|
{
|
|
PVOID thread_data_pool;
|
|
PVOID stack_frames;
|
|
PVOID nmi_context;
|
|
|
|
}NMI_POOLS, * PNMI_POOLS;
|
|
|
|
typedef struct _NMI_CORE_CONTEXT
|
|
{
|
|
INT nmi_callbacks_run;
|
|
|
|
}NMI_CORE_CONTEXT, * PNMI_CORE_CONTEXT;
|
|
|
|
typedef struct _MODULE_VALIDATION_FAILURE_HEADER
|
|
{
|
|
INT module_count;
|
|
|
|
}MODULE_VALIDATION_FAILURE_HEADER, * PMODULE_VALIDATION_FAILURE_HEADER;
|
|
|
|
typedef struct _NMI_CONTEXT
|
|
{
|
|
PVOID thread_data_pool;
|
|
PVOID stack_frames;
|
|
PVOID nmi_core_context;
|
|
INT core_count;
|
|
|
|
}NMI_CONTEXT, * PNMI_CONTEXT;
|
|
|
|
typedef struct _NMI_CALLBACK_DATA
|
|
{
|
|
UINT64 kthread_address;
|
|
UINT64 kprocess_address;
|
|
UINT64 start_address;
|
|
UINT64 stack_limit;
|
|
UINT64 stack_base;
|
|
uintptr_t stack_frames_offset;
|
|
INT num_frames_captured;
|
|
UINT64 cr3;
|
|
|
|
}NMI_CALLBACK_DATA, * PNMI_CALLBACK_DATA;
|
|
|
|
typedef struct _INVALID_DRIVER
|
|
{
|
|
struct _INVALID_DRIVER* next;
|
|
INT reason;
|
|
PDRIVER_OBJECT driver;
|
|
|
|
}INVALID_DRIVER, * PINVALID_DRIVER;
|
|
|
|
typedef struct _INVALID_DRIVERS_HEAD
|
|
{
|
|
PINVALID_DRIVER first_entry;
|
|
INT count;
|
|
|
|
}INVALID_DRIVERS_HEAD, * PINVALID_DRIVERS_HEAD;
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
PopulateWhitelistedModuleBuffer(
|
|
_Inout_ PVOID Buffer,
|
|
_In_ PSYSTEM_MODULES SystemModules);
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
ValidateDriverIOCTLDispatchRegion(
|
|
_In_ PDRIVER_OBJECT Driver,
|
|
_In_ PSYSTEM_MODULES Modules,
|
|
_In_ PWHITELISTED_REGIONS WhitelistedRegions,
|
|
_Out_ PBOOLEAN Flag);
|
|
|
|
STATIC
|
|
VOID
|
|
InitDriverList(
|
|
_Inout_ PINVALID_DRIVERS_HEAD ListHead);
|
|
|
|
STATIC
|
|
VOID
|
|
AddDriverToList(
|
|
_Inout_ PINVALID_DRIVERS_HEAD InvalidDriversHead,
|
|
_In_ PDRIVER_OBJECT Driver,
|
|
_In_ INT Reason);
|
|
|
|
STATIC
|
|
VOID
|
|
RemoveInvalidDriverFromList(
|
|
_Inout_ PINVALID_DRIVERS_HEAD InvalidDriversHead);
|
|
|
|
STATIC
|
|
VOID
|
|
EnumerateInvalidDrivers(
|
|
_In_ PINVALID_DRIVERS_HEAD InvalidDriversHead);
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
ValidateDriverObjectHasBackingModule(
|
|
_In_ PSYSTEM_MODULES ModuleInformation,
|
|
_In_ PDRIVER_OBJECT DriverObject,
|
|
_Out_ PBOOLEAN Result);
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
ValidateDriverObjects(
|
|
_In_ PSYSTEM_MODULES SystemModules,
|
|
_Inout_ PINVALID_DRIVERS_HEAD InvalidDriverListHead);
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
AnalyseNmiData(
|
|
_In_ PNMI_CONTEXT NmiContext,
|
|
_In_ PSYSTEM_MODULES SystemModules,
|
|
_Inout_ PIRP Irp);
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
LaunchNonMaskableInterrupt(
|
|
_Inout_ PNMI_CONTEXT NmiContext);
|
|
|
|
STATIC
|
|
VOID
|
|
ApcRundownRoutine(
|
|
_In_ PRKAPC Apc);
|
|
|
|
STATIC
|
|
VOID
|
|
ApcKernelRoutine(
|
|
_In_ PRKAPC Apc,
|
|
_Inout_ _Deref_pre_maybenull_ PKNORMAL_ROUTINE* NormalRoutine,
|
|
_Inout_ _Deref_pre_maybenull_ PVOID* NormalContext,
|
|
_Inout_ _Deref_pre_maybenull_ PVOID* SystemArgument1,
|
|
_Inout_ _Deref_pre_maybenull_ PVOID* SystemArgument2);
|
|
|
|
STATIC
|
|
VOID
|
|
ApcNormalRoutine(
|
|
_In_opt_ PVOID NormalContext,
|
|
_In_opt_ PVOID SystemArgument1,
|
|
_In_opt_ PVOID SystemArgument2);
|
|
|
|
STATIC
|
|
VOID
|
|
ValidateThreadViaKernelApcCallback(
|
|
_In_ PTHREAD_LIST_ENTRY ThreadListEntry,
|
|
_Inout_opt_ PVOID Context);
|
|
|
|
#ifdef ALLOC_PRAGMA
|
|
#pragma alloc_text(PAGE, FindSystemModuleByName)
|
|
#pragma alloc_text(PAGE, PopulateWhitelistedModuleBuffer)
|
|
#pragma alloc_text(PAGE, ValidateDriverIOCTLDispatchRegion)
|
|
#pragma alloc_text(PAGE, InitDriverList)
|
|
#pragma alloc_text(PAGE, AddDriverToList)
|
|
#pragma alloc_text(PAGE, RemoveInvalidDriverFromList)
|
|
#pragma alloc_text(PAGE, EnumerateInvalidDrivers)
|
|
#pragma alloc_text(PAGE, ValidateDriverObjectHasBackingModule)
|
|
#pragma alloc_text(PAGE, GetSystemModuleInformation)
|
|
#pragma alloc_text(PAGE, ValidateDriverObjects)
|
|
#pragma alloc_text(PAGE, HandleValidateDriversIOCTL)
|
|
#pragma alloc_text(PAGE, IsInstructionPointerInInvalidRegion)
|
|
#pragma alloc_text(PAGE, AnalyseNmiData)
|
|
#pragma alloc_text(PAGE, LaunchNonMaskableInterrupt)
|
|
#pragma alloc_text(PAGE, HandleNmiIOCTL)
|
|
#pragma alloc_text(PAGE, ApcRundownRoutine)
|
|
#pragma alloc_text(PAGE, ApcKernelRoutine)
|
|
#pragma alloc_text(PAGE, ApcNormalRoutine)
|
|
#pragma alloc_text(PAGE, FlipKThreadMiscFlagsFlag)
|
|
#pragma alloc_text(PAGE, ValidateThreadsViaKernelApc)
|
|
#endif
|
|
|
|
/*
|
|
* TODO: this needs to be refactored to just return the entry not the whole fukin thing
|
|
*/
|
|
PRTL_MODULE_EXTENDED_INFO
|
|
FindSystemModuleByName(
|
|
_In_ LPCSTR ModuleName,
|
|
_In_ PSYSTEM_MODULES SystemModules
|
|
)
|
|
{
|
|
if (!ModuleName || !SystemModules)
|
|
return STATUS_INVALID_PARAMETER;
|
|
|
|
for (INT index = 0; index < SystemModules->module_count; index++)
|
|
{
|
|
PRTL_MODULE_EXTENDED_INFO system_module = (PRTL_MODULE_EXTENDED_INFO)(
|
|
(uintptr_t)SystemModules->address + index * sizeof(RTL_MODULE_EXTENDED_INFO));
|
|
|
|
if (strstr(system_module->FullPathName, ModuleName))
|
|
{
|
|
return system_module;
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
PopulateWhitelistedModuleBuffer(
|
|
_Inout_ PVOID Buffer,
|
|
_In_ PSYSTEM_MODULES SystemModules
|
|
)
|
|
{
|
|
if (!Buffer || !SystemModules)
|
|
return STATUS_INVALID_PARAMETER;
|
|
|
|
for (INT index = 0; index < WHITELISTED_MODULE_COUNT; index++)
|
|
{
|
|
LPCSTR name = WHITELISTED_MODULES[index];
|
|
|
|
PRTL_MODULE_EXTENDED_INFO module = FindSystemModuleByName(name, SystemModules);
|
|
|
|
/* not everyone will contain all whitelisted modules */
|
|
if (!module)
|
|
continue;
|
|
|
|
WHITELISTED_REGIONS region;
|
|
region.base = (UINT64)module->ImageBase;
|
|
region.end = region.base + module->ImageSize;
|
|
|
|
RtlCopyMemory(
|
|
(UINT64)Buffer + index * sizeof(WHITELISTED_REGIONS),
|
|
®ion,
|
|
sizeof(WHITELISTED_REGIONS)
|
|
);
|
|
}
|
|
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
ValidateDriverIOCTLDispatchRegion(
|
|
_In_ PDRIVER_OBJECT Driver,
|
|
_In_ PSYSTEM_MODULES Modules,
|
|
_In_ PWHITELISTED_REGIONS WhitelistedRegions,
|
|
_Out_ PBOOLEAN Flag
|
|
)
|
|
{
|
|
if (!Modules || !Driver || !Flag || !WhitelistedRegions)
|
|
return STATUS_INVALID_PARAMETER;
|
|
|
|
UINT64 dispatch_function;
|
|
UINT64 module_base;
|
|
UINT64 module_end;
|
|
|
|
*Flag = TRUE;
|
|
|
|
dispatch_function = Driver->MajorFunction[IRP_MJ_DEVICE_CONTROL];
|
|
|
|
if (dispatch_function == NULL)
|
|
return STATUS_SUCCESS;
|
|
|
|
for (INT index = 0; index < Modules->module_count; index++)
|
|
{
|
|
PRTL_MODULE_EXTENDED_INFO system_module = (PRTL_MODULE_EXTENDED_INFO)(
|
|
(uintptr_t)Modules->address + index * sizeof(RTL_MODULE_EXTENDED_INFO));
|
|
|
|
if (system_module->ImageBase != Driver->DriverStart)
|
|
continue;
|
|
|
|
/* make sure our driver has a device object which is required for IOCTL */
|
|
if (Driver->DeviceObject == NULL)
|
|
return STATUS_SUCCESS;
|
|
|
|
module_base = (UINT64)system_module->ImageBase;
|
|
module_end = module_base + system_module->ImageSize;
|
|
|
|
/* firstly, check if its inside its own module */
|
|
if (dispatch_function >= module_base && dispatch_function <= module_end)
|
|
return STATUS_SUCCESS;
|
|
|
|
/*
|
|
* The WDF framework and other low level drivers often hook the dispatch routines
|
|
* when initiating the respective config of their framework or system. With a bit of
|
|
* digging you can view the drivers reponsible for the hooks. What this means is that
|
|
* there will be legit drivers with dispatch routines that point outside of ntoskrnl
|
|
* and their own memory region. So, I have formed a list which contains the drivers
|
|
* that perform these hooks and we iteratively check if the dispatch routine is contained
|
|
* within one of these whitelisted regions. A note on how to imrpove this is the fact
|
|
* that a code cave can be used inside a whitelisted region which then jumps to an invalid
|
|
* region such as a manually mapped driver. So in the future we should implement a function
|
|
* which checks for standard hook implementations like mov rax jmp rax etc.
|
|
*/
|
|
for (INT index = 0; index < WHITELISTED_MODULE_COUNT; index++)
|
|
{
|
|
if (dispatch_function >= WhitelistedRegions[index].base &&
|
|
dispatch_function <= WhitelistedRegions[index].end)
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
DEBUG_LOG("name: %s, base: %p, size: %lx, dispatch: %llx, type: %lx",
|
|
system_module->FullPathName,
|
|
system_module->ImageBase,
|
|
system_module->ImageSize,
|
|
dispatch_function,
|
|
Driver->DeviceObject->DeviceType);
|
|
|
|
*Flag = FALSE;
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
InitDriverList(
|
|
_Inout_ PINVALID_DRIVERS_HEAD ListHead
|
|
)
|
|
{
|
|
ListHead->count = 0;
|
|
ListHead->first_entry = NULL;
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
AddDriverToList(
|
|
_Inout_ PINVALID_DRIVERS_HEAD InvalidDriversHead,
|
|
_In_ PDRIVER_OBJECT Driver,
|
|
_In_ INT Reason
|
|
)
|
|
{
|
|
PINVALID_DRIVER new_entry = ExAllocatePool2(
|
|
POOL_FLAG_NON_PAGED,
|
|
sizeof(INVALID_DRIVER),
|
|
INVALID_DRIVER_LIST_ENTRY_POOL
|
|
);
|
|
|
|
if (!new_entry)
|
|
return;
|
|
|
|
new_entry->driver = Driver;
|
|
new_entry->reason = Reason;
|
|
new_entry->next = InvalidDriversHead->first_entry;
|
|
InvalidDriversHead->first_entry = new_entry;
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
RemoveInvalidDriverFromList(
|
|
_Inout_ PINVALID_DRIVERS_HEAD InvalidDriversHead
|
|
)
|
|
{
|
|
if (InvalidDriversHead->first_entry)
|
|
{
|
|
PINVALID_DRIVER entry = InvalidDriversHead->first_entry;
|
|
InvalidDriversHead->first_entry = InvalidDriversHead->first_entry->next;
|
|
ExFreePoolWithTag(entry, INVALID_DRIVER_LIST_ENTRY_POOL);
|
|
}
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
EnumerateInvalidDrivers(
|
|
_In_ PINVALID_DRIVERS_HEAD InvalidDriversHead
|
|
)
|
|
{
|
|
PINVALID_DRIVER entry = InvalidDriversHead->first_entry;
|
|
|
|
while (entry != NULL)
|
|
{
|
|
DEBUG_LOG("Invalid Driver: %wZ", entry->driver->DriverName);
|
|
entry = entry->next;
|
|
}
|
|
}
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
ValidateDriverObjectHasBackingModule(
|
|
_In_ PSYSTEM_MODULES ModuleInformation,
|
|
_In_ PDRIVER_OBJECT DriverObject,
|
|
_Out_ PBOOLEAN Result
|
|
)
|
|
{
|
|
if (!ModuleInformation || !DriverObject || !Result)
|
|
return STATUS_INVALID_PARAMETER;
|
|
|
|
for (INT i = 0; i < ModuleInformation->module_count; i++)
|
|
{
|
|
PRTL_MODULE_EXTENDED_INFO system_module = (PRTL_MODULE_EXTENDED_INFO)(
|
|
(uintptr_t)ModuleInformation->address + i * sizeof(RTL_MODULE_EXTENDED_INFO));
|
|
|
|
if (system_module->ImageBase == DriverObject->DriverStart)
|
|
{
|
|
*Result = TRUE;
|
|
return STATUS_SUCCESS;
|
|
}
|
|
}
|
|
|
|
DEBUG_LOG("invalid driver found");
|
|
*Result = FALSE;
|
|
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
//https://imphash.medium.com/windows-process-internals-a-few-concepts-to-know-before-jumping-on-memory-forensics-part-3-4a0e195d947b
|
|
NTSTATUS
|
|
GetSystemModuleInformation(
|
|
_Inout_ PSYSTEM_MODULES ModuleInformation
|
|
)
|
|
{
|
|
if (!ModuleInformation)
|
|
return STATUS_INVALID_PARAMETER;
|
|
|
|
ULONG size = 0;
|
|
|
|
/*
|
|
* query system module information without an output buffer to get
|
|
* number of bytes required to store all module info structures
|
|
*/
|
|
if (!NT_SUCCESS(RtlQueryModuleInformation(
|
|
&size,
|
|
sizeof(RTL_MODULE_EXTENDED_INFO),
|
|
NULL
|
|
)))
|
|
{
|
|
DEBUG_ERROR("Failed to query module information");
|
|
return STATUS_ABANDONED;
|
|
}
|
|
|
|
/* Allocate a pool equal to the output size of RtlQueryModuleInformation */
|
|
PRTL_MODULE_EXTENDED_INFO driver_information = ExAllocatePool2(
|
|
POOL_FLAG_NON_PAGED,
|
|
size,
|
|
SYSTEM_MODULES_POOL
|
|
);
|
|
|
|
if (!driver_information)
|
|
{
|
|
DEBUG_ERROR("Failed to allocate pool LOL");
|
|
return STATUS_ABANDONED;
|
|
}
|
|
|
|
/* Query the modules again this time passing a pointer to the allocated buffer */
|
|
if (!NT_SUCCESS(RtlQueryModuleInformation(
|
|
&size,
|
|
sizeof(RTL_MODULE_EXTENDED_INFO),
|
|
driver_information
|
|
)))
|
|
{
|
|
DEBUG_ERROR("Failed lolz");
|
|
ExFreePoolWithTag(driver_information, SYSTEM_MODULES_POOL);
|
|
return STATUS_ABANDONED;
|
|
}
|
|
|
|
ModuleInformation->address = driver_information;
|
|
ModuleInformation->module_count = size / sizeof(RTL_MODULE_EXTENDED_INFO);
|
|
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
ValidateDriverObjects(
|
|
_In_ PSYSTEM_MODULES SystemModules,
|
|
_Inout_ PINVALID_DRIVERS_HEAD InvalidDriverListHead
|
|
)
|
|
{
|
|
if (!SystemModules || !InvalidDriverListHead)
|
|
return STATUS_INVALID_PARAMETER;
|
|
|
|
HANDLE handle;
|
|
OBJECT_ATTRIBUTES attributes = { 0 };
|
|
PVOID directory = { 0 };
|
|
UNICODE_STRING directory_name;
|
|
NTSTATUS status;
|
|
|
|
RtlInitUnicodeString(&directory_name, L"\\Driver");
|
|
|
|
InitializeObjectAttributes(
|
|
&attributes,
|
|
&directory_name,
|
|
OBJ_CASE_INSENSITIVE,
|
|
NULL,
|
|
NULL
|
|
);
|
|
|
|
if (!NT_SUCCESS(ZwOpenDirectoryObject(
|
|
&handle,
|
|
DIRECTORY_ALL_ACCESS,
|
|
&attributes
|
|
)))
|
|
{
|
|
DEBUG_ERROR("Failed to query directory object");
|
|
return STATUS_ABANDONED;
|
|
}
|
|
|
|
if (!NT_SUCCESS(ObReferenceObjectByHandle(
|
|
handle,
|
|
DIRECTORY_ALL_ACCESS,
|
|
NULL,
|
|
KernelMode,
|
|
&directory,
|
|
NULL
|
|
)))
|
|
{
|
|
DEBUG_ERROR("Failed to reference directory by handle");
|
|
ZwClose(handle);
|
|
return STATUS_ABANDONED;
|
|
}
|
|
|
|
/*
|
|
* Windows organises its drivers in object directories (not the same as
|
|
* files directories). For the driver directory, there are 37 entries,
|
|
* each driver is hashed and indexed. If there is a driver with a duplicate
|
|
* index, it is inserted into same index in a linked list using the
|
|
* _OBJECT_DIRECTORY_ENTRY struct. So to enumerate all drivers we visit
|
|
* each entry in the hashmap, enumerate all objects in the linked list
|
|
* at entry j then we increment the hashmap index i. The motivation behind
|
|
* this is that when a driver is accessed, it is brought to the first index
|
|
* in the linked list, so drivers that are accessed the most can be
|
|
* accessed quickly
|
|
*/
|
|
|
|
POBJECT_DIRECTORY directory_object = (POBJECT_DIRECTORY)directory;
|
|
|
|
ExAcquirePushLockExclusiveEx(&directory_object->Lock, NULL);
|
|
|
|
PVOID whitelisted_regions_buffer = ExAllocatePool2(
|
|
POOL_FLAG_NON_PAGED,
|
|
WHITELISTED_MODULE_COUNT * MODULE_MAX_STRING_SIZE,
|
|
WHITELISTED_MODULE_TAG
|
|
);
|
|
|
|
if (!whitelisted_regions_buffer)
|
|
goto end;
|
|
|
|
status = PopulateWhitelistedModuleBuffer(
|
|
whitelisted_regions_buffer,
|
|
SystemModules
|
|
);
|
|
|
|
if (!NT_SUCCESS(status))
|
|
{
|
|
DEBUG_ERROR("PopulateWhiteListedBuffer failed with status %x", status);
|
|
goto end;
|
|
}
|
|
|
|
for (INT i = 0; i < NUMBER_HASH_BUCKETS; i++)
|
|
{
|
|
POBJECT_DIRECTORY_ENTRY entry = directory_object->HashBuckets[i];
|
|
|
|
if (!entry)
|
|
continue;
|
|
|
|
POBJECT_DIRECTORY_ENTRY sub_entry = entry;
|
|
|
|
while (sub_entry)
|
|
{
|
|
PDRIVER_OBJECT current_driver = sub_entry->Object;
|
|
BOOLEAN flag;
|
|
|
|
/* validate driver has backing module */
|
|
|
|
if (!NT_SUCCESS(ValidateDriverObjectHasBackingModule(
|
|
SystemModules,
|
|
current_driver,
|
|
&flag
|
|
)))
|
|
{
|
|
DEBUG_LOG("Error validating driver object");
|
|
ExReleasePushLockExclusiveEx(&directory_object->Lock, 0);
|
|
ObDereferenceObject(directory);
|
|
ZwClose(handle);
|
|
return STATUS_ABANDONED;
|
|
}
|
|
|
|
if (!flag)
|
|
{
|
|
InvalidDriverListHead->count += 1;
|
|
AddDriverToList(InvalidDriverListHead, current_driver, REASON_NO_BACKING_MODULE);
|
|
}
|
|
|
|
/* validate drivers IOCTL dispatch routines */
|
|
|
|
if (!NT_SUCCESS(ValidateDriverIOCTLDispatchRegion(
|
|
current_driver,
|
|
SystemModules,
|
|
(PWHITELISTED_REGIONS)whitelisted_regions_buffer,
|
|
&flag
|
|
)))
|
|
{
|
|
DEBUG_LOG("Error validating drivers IOCTL routines");
|
|
ExReleasePushLockExclusiveEx(&directory_object->Lock, 0);
|
|
ObDereferenceObject(directory);
|
|
ZwClose(handle);
|
|
return STATUS_ABANDONED;
|
|
}
|
|
|
|
if (!flag)
|
|
{
|
|
InvalidDriverListHead->count += 1;
|
|
AddDriverToList(InvalidDriverListHead, current_driver, REASON_INVALID_IOCTL_DISPATCH);
|
|
}
|
|
|
|
sub_entry = sub_entry->ChainLink;
|
|
}
|
|
}
|
|
|
|
end:
|
|
if (whitelisted_regions_buffer)
|
|
ExFreePoolWithTag(whitelisted_regions_buffer, WHITELISTED_MODULE_TAG);
|
|
|
|
ExReleasePushLockExclusiveEx(&directory_object->Lock, 0);
|
|
ObDereferenceObject(directory);
|
|
ZwClose(handle);
|
|
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
NTSTATUS
|
|
HandleValidateDriversIOCTL(
|
|
_Inout_ PIRP Irp
|
|
)
|
|
{
|
|
NTSTATUS status;
|
|
SYSTEM_MODULES system_modules = { 0 };
|
|
|
|
/* Fix annoying visual studio linting error */
|
|
RtlZeroMemory(&system_modules, sizeof(SYSTEM_MODULES));
|
|
|
|
status = GetSystemModuleInformation(&system_modules);
|
|
|
|
if (!NT_SUCCESS(status))
|
|
{
|
|
DEBUG_ERROR("Error retriving system module information");
|
|
return status;
|
|
}
|
|
|
|
PINVALID_DRIVERS_HEAD head =
|
|
ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(INVALID_DRIVERS_HEAD), INVALID_DRIVER_LIST_HEAD_POOL);
|
|
|
|
if (!head)
|
|
{
|
|
ExFreePoolWithTag(system_modules.address, SYSTEM_MODULES_POOL);
|
|
return STATUS_ABANDONED;
|
|
}
|
|
|
|
/*
|
|
* Use a linked list here so that so we have easy access to the invalid drivers
|
|
* which we can then use to copy the drivers logic for further analysis in
|
|
* identifying drivers specifically used for the purpose of cheating
|
|
*/
|
|
|
|
InitDriverList(head);
|
|
|
|
if (!NT_SUCCESS(ValidateDriverObjects(&system_modules, head)))
|
|
{
|
|
DEBUG_ERROR("Failed to validate driver objects");
|
|
ExFreePoolWithTag(system_modules.address, SYSTEM_MODULES_POOL);
|
|
return STATUS_ABANDONED;
|
|
}
|
|
|
|
MODULE_VALIDATION_FAILURE_HEADER header;
|
|
|
|
header.module_count = head->count >= MODULE_VALIDATION_FAILURE_MAX_REPORT_COUNT
|
|
? MODULE_VALIDATION_FAILURE_MAX_REPORT_COUNT
|
|
: head->count;
|
|
|
|
if (head->count > 0)
|
|
{
|
|
DEBUG_LOG("found INVALID drivers with count: %i", head->count);
|
|
|
|
PVOID buffer = ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(MODULE_VALIDATION_FAILURE_HEADER) +
|
|
MODULE_VALIDATION_FAILURE_MAX_REPORT_COUNT * sizeof(MODULE_VALIDATION_FAILURE), MODULES_REPORT_POOL_TAG);
|
|
|
|
if (!buffer)
|
|
{
|
|
ExFreePoolWithTag(head, INVALID_DRIVER_LIST_HEAD_POOL);
|
|
ExFreePoolWithTag(system_modules.address, SYSTEM_MODULES_POOL);
|
|
return STATUS_MEMORY_NOT_ALLOCATED;
|
|
}
|
|
|
|
Irp->IoStatus.Information = sizeof(MODULE_VALIDATION_FAILURE_HEADER) +
|
|
MODULE_VALIDATION_FAILURE_MAX_REPORT_COUNT * sizeof(MODULE_VALIDATION_FAILURE);
|
|
|
|
RtlCopyMemory(
|
|
buffer,
|
|
&header,
|
|
sizeof(MODULE_VALIDATION_FAILURE_HEADER)
|
|
);
|
|
|
|
for (INT i = 0; i < head->count; i++)
|
|
{
|
|
/* make sure we free any non reported modules */
|
|
if (i >= MODULE_VALIDATION_FAILURE_MAX_REPORT_COUNT)
|
|
{
|
|
RemoveInvalidDriverFromList(head);
|
|
continue;
|
|
}
|
|
|
|
MODULE_VALIDATION_FAILURE report;
|
|
report.report_code = REPORT_MODULE_VALIDATION_FAILURE;
|
|
report.report_type = head->first_entry->reason;
|
|
report.driver_base_address = head->first_entry->driver->DriverStart;
|
|
report.driver_size = head->first_entry->driver->DriverSize;
|
|
|
|
ANSI_STRING string;
|
|
string.Length = 0;
|
|
string.MaximumLength = MODULE_REPORT_DRIVER_NAME_BUFFER_SIZE;
|
|
string.Buffer = &report.driver_name;
|
|
|
|
status = RtlUnicodeStringToAnsiString(
|
|
&string,
|
|
&head->first_entry->driver->DriverName,
|
|
FALSE
|
|
);
|
|
|
|
/* still continue if we fail to get the driver name */
|
|
if (!NT_SUCCESS(status))
|
|
DEBUG_ERROR("RtlUnicodeStringToAnsiString failed with statsu %x", status);
|
|
|
|
RtlCopyMemory(
|
|
(UINT64)buffer + sizeof(MODULE_VALIDATION_FAILURE_HEADER) + i * sizeof(MODULE_VALIDATION_FAILURE),
|
|
&report,
|
|
sizeof(MODULE_VALIDATION_FAILURE));
|
|
|
|
RemoveInvalidDriverFromList(head);
|
|
}
|
|
|
|
RtlCopyMemory(
|
|
Irp->AssociatedIrp.SystemBuffer,
|
|
buffer,
|
|
sizeof(MODULE_VALIDATION_FAILURE_HEADER) + MODULE_VALIDATION_FAILURE_MAX_REPORT_COUNT * sizeof(MODULE_VALIDATION_FAILURE)
|
|
);
|
|
|
|
ExFreePoolWithTag(buffer, MODULES_REPORT_POOL_TAG);
|
|
}
|
|
else
|
|
{
|
|
DEBUG_LOG("No INVALID drivers found :)");
|
|
}
|
|
|
|
ExFreePoolWithTag(head, INVALID_DRIVER_LIST_HEAD_POOL);
|
|
ExFreePoolWithTag(system_modules.address, SYSTEM_MODULES_POOL);
|
|
|
|
return status;
|
|
}
|
|
|
|
NTSTATUS
|
|
IsInstructionPointerInInvalidRegion(
|
|
_In_ UINT64 RIP,
|
|
_In_ PSYSTEM_MODULES SystemModules,
|
|
_Out_ PBOOLEAN Result
|
|
)
|
|
{
|
|
if (!RIP || !SystemModules || !Result)
|
|
return STATUS_INVALID_PARAMETER;
|
|
|
|
/* Note that this does not check for HAL or PatchGuard Execution */
|
|
for (INT i = 0; i < SystemModules->module_count; i++)
|
|
{
|
|
PRTL_MODULE_EXTENDED_INFO system_module = (PRTL_MODULE_EXTENDED_INFO)(
|
|
(uintptr_t)SystemModules->address + i * sizeof(RTL_MODULE_EXTENDED_INFO));
|
|
|
|
UINT64 base = (UINT64)system_module->ImageBase;
|
|
UINT64 end = base + system_module->ImageSize;
|
|
|
|
if (RIP >= base && RIP <= end)
|
|
{
|
|
*Result = TRUE;
|
|
return STATUS_SUCCESS;;
|
|
}
|
|
}
|
|
|
|
*Result = FALSE;
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
AnalyseNmiData(
|
|
_In_ PNMI_CONTEXT NmiContext,
|
|
_In_ PSYSTEM_MODULES SystemModules,
|
|
_Inout_ PIRP Irp
|
|
)
|
|
{
|
|
if (!NmiContext || !SystemModules)
|
|
return STATUS_INVALID_PARAMETER;
|
|
|
|
for (INT core = 0; core < NmiContext->core_count; core++)
|
|
{
|
|
PNMI_CORE_CONTEXT context = (PNMI_CORE_CONTEXT)((uintptr_t)NmiContext->nmi_core_context + core * sizeof(NMI_CORE_CONTEXT));
|
|
|
|
/* Make sure our NMIs were run */
|
|
if (!context->nmi_callbacks_run)
|
|
{
|
|
NMI_CALLBACK_FAILURE report;
|
|
report.report_code = REPORT_NMI_CALLBACK_FAILURE;
|
|
report.kthread_address = NULL;
|
|
report.invalid_rip = NULL;
|
|
report.were_nmis_disabled = TRUE;
|
|
|
|
Irp->IoStatus.Information = sizeof(NMI_CALLBACK_FAILURE);
|
|
|
|
RtlCopyMemory(
|
|
Irp->AssociatedIrp.SystemBuffer,
|
|
&report,
|
|
sizeof(NMI_CALLBACK_FAILURE)
|
|
);
|
|
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
PNMI_CALLBACK_DATA thread_data = (PNMI_CALLBACK_DATA)(
|
|
(uintptr_t)NmiContext->thread_data_pool + core * sizeof(NMI_CALLBACK_DATA));
|
|
|
|
DEBUG_LOG("cpu number: %i callback count: %i", core, context->nmi_callbacks_run);
|
|
|
|
/* Walk the stack */
|
|
for (INT frame = 0; frame < thread_data->num_frames_captured; frame++)
|
|
{
|
|
BOOLEAN flag;
|
|
DWORD64 stack_frame = *(DWORD64*)(
|
|
((uintptr_t)NmiContext->stack_frames + thread_data->stack_frames_offset + frame * sizeof(PVOID)));
|
|
|
|
if (!NT_SUCCESS(IsInstructionPointerInInvalidRegion(stack_frame, SystemModules, &flag)))
|
|
{
|
|
DEBUG_ERROR("errro checking RIP for current stack address");
|
|
continue;
|
|
}
|
|
|
|
if (flag == FALSE)
|
|
{
|
|
/*
|
|
* Note: for now, we only handle 1 report at a time so we stop the
|
|
* analysis once we receive a report since we only send a buffer
|
|
* large enough for 1 report. In the future this should be changed
|
|
* to a buffer that can hold atleast 4 reports (since the chance we
|
|
* get 4 reports with a single NMI would be impossible) so we can
|
|
* continue parsing the rest of the stack frames after receiving a
|
|
* single report.
|
|
*/
|
|
|
|
NMI_CALLBACK_FAILURE report;
|
|
report.report_code = REPORT_NMI_CALLBACK_FAILURE;
|
|
report.kthread_address = thread_data->kthread_address;
|
|
report.invalid_rip = stack_frame;
|
|
report.were_nmis_disabled = FALSE;
|
|
|
|
Irp->IoStatus.Information = sizeof(NMI_CALLBACK_FAILURE);
|
|
|
|
RtlCopyMemory(
|
|
Irp->AssociatedIrp.SystemBuffer,
|
|
&report,
|
|
sizeof(NMI_CALLBACK_FAILURE)
|
|
);
|
|
|
|
return STATUS_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
NmiCallback(
|
|
_Inout_opt_ PVOID Context,
|
|
_In_ BOOLEAN Handled
|
|
)
|
|
{
|
|
UNREFERENCED_PARAMETER(Handled);
|
|
|
|
PVOID current_thread = KeGetCurrentThread();
|
|
NMI_CALLBACK_DATA thread_data = { 0 };
|
|
PNMI_CONTEXT nmi_context = (PNMI_CONTEXT)Context;
|
|
ULONG proc_num = KeGetCurrentProcessorNumber();
|
|
|
|
if (!nmi_context)
|
|
return TRUE;
|
|
|
|
/*
|
|
* Cannot allocate pool in this function as it runs at IRQL >= dispatch level
|
|
* so ive just allocated a global pool with size equal to 0x200 * num_procs
|
|
*/
|
|
INT num_frames_captured = RtlCaptureStackBackTrace(
|
|
NULL,
|
|
STACK_FRAME_POOL_SIZE / sizeof(UINT64),
|
|
(uintptr_t)nmi_context->stack_frames + proc_num * STACK_FRAME_POOL_SIZE,
|
|
NULL
|
|
);
|
|
|
|
/*
|
|
* This function is run in the context of the interrupted thread hence we can
|
|
* gather any and all information regarding the thread that may be useful for analysis
|
|
*/
|
|
thread_data.kthread_address = (UINT64)current_thread;
|
|
thread_data.kprocess_address = (UINT64)PsGetCurrentProcess();
|
|
thread_data.stack_base = *((UINT64*)((uintptr_t)current_thread + KTHREAD_STACK_BASE_OFFSET));
|
|
thread_data.stack_limit = *((UINT64*)((uintptr_t)current_thread + KTHREAD_STACK_LIMIT_OFFSET));
|
|
thread_data.start_address = *((UINT64*)((uintptr_t)current_thread + KTHREAD_START_ADDRESS_OFFSET));
|
|
thread_data.cr3 = __readcr3();
|
|
thread_data.stack_frames_offset = proc_num * STACK_FRAME_POOL_SIZE;
|
|
thread_data.num_frames_captured = num_frames_captured;
|
|
|
|
RtlCopyMemory(
|
|
((uintptr_t)nmi_context->thread_data_pool) + proc_num * sizeof(thread_data),
|
|
&thread_data,
|
|
sizeof(thread_data)
|
|
);
|
|
|
|
PNMI_CORE_CONTEXT core_context =
|
|
(PNMI_CORE_CONTEXT)((uintptr_t)nmi_context->nmi_core_context + proc_num * sizeof(NMI_CORE_CONTEXT));
|
|
|
|
core_context->nmi_callbacks_run += 1;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
STATIC
|
|
NTSTATUS
|
|
LaunchNonMaskableInterrupt(
|
|
_Inout_ PNMI_CONTEXT NmiContext
|
|
)
|
|
{
|
|
if (!NmiContext)
|
|
return STATUS_INVALID_PARAMETER;
|
|
|
|
PKAFFINITY_EX ProcAffinityPool =
|
|
ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(KAFFINITY_EX), PROC_AFFINITY_POOL);
|
|
|
|
if (!ProcAffinityPool)
|
|
return STATUS_MEMORY_NOT_ALLOCATED;
|
|
|
|
NmiContext->stack_frames =
|
|
ExAllocatePool2(POOL_FLAG_NON_PAGED, NmiContext->core_count * STACK_FRAME_POOL_SIZE, STACK_FRAMES_POOL);
|
|
|
|
if (!NmiContext->stack_frames)
|
|
{
|
|
ExFreePoolWithTag(ProcAffinityPool, PROC_AFFINITY_POOL);
|
|
return STATUS_MEMORY_NOT_ALLOCATED;
|
|
}
|
|
|
|
NmiContext->thread_data_pool =
|
|
ExAllocatePool2(POOL_FLAG_NON_PAGED, NmiContext->core_count * sizeof(NMI_CALLBACK_DATA), THREAD_DATA_POOL);
|
|
|
|
if (!NmiContext->thread_data_pool)
|
|
{
|
|
ExFreePoolWithTag(NmiContext->stack_frames, STACK_FRAMES_POOL);
|
|
ExFreePoolWithTag(ProcAffinityPool, PROC_AFFINITY_POOL);
|
|
return STATUS_MEMORY_NOT_ALLOCATED;
|
|
}
|
|
|
|
LARGE_INTEGER delay = { 0 };
|
|
delay.QuadPart -= 100 * 10000;
|
|
|
|
for (ULONG core = 0; core < NmiContext->core_count; core++)
|
|
{
|
|
KeInitializeAffinityEx(ProcAffinityPool);
|
|
KeAddProcessorAffinityEx(ProcAffinityPool, core);
|
|
|
|
HalSendNMI(ProcAffinityPool);
|
|
|
|
/*
|
|
* Only a single NMI can be active at any given time, so arbitrarily
|
|
* delay execution to allow time for the NMI to be processed
|
|
*/
|
|
KeDelayExecutionThread(KernelMode, FALSE, &delay);
|
|
}
|
|
|
|
ExFreePoolWithTag(ProcAffinityPool, PROC_AFFINITY_POOL);
|
|
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
NTSTATUS
|
|
HandleNmiIOCTL(
|
|
_Inout_ PIRP Irp
|
|
)
|
|
{
|
|
NTSTATUS status;
|
|
SYSTEM_MODULES system_modules = { 0 };
|
|
NMI_CONTEXT nmi_context = { 0 };
|
|
PVOID callback_handle;
|
|
|
|
nmi_context.core_count = KeQueryActiveProcessorCountEx(0);
|
|
nmi_context.nmi_core_context =
|
|
ExAllocatePool2(POOL_FLAG_NON_PAGED, nmi_context.core_count * sizeof(NMI_CORE_CONTEXT), NMI_CONTEXT_POOL);
|
|
|
|
if (!nmi_context.nmi_core_context)
|
|
return STATUS_MEMORY_NOT_ALLOCATED;
|
|
|
|
/*
|
|
* We want to register and unregister our callback each time so it becomes harder
|
|
* for people to hook our callback and get up to some funny business
|
|
*/
|
|
callback_handle = KeRegisterNmiCallback(NmiCallback, &nmi_context);
|
|
|
|
if (!callback_handle)
|
|
{
|
|
DEBUG_ERROR("KeRegisterNmiCallback failed");
|
|
ExFreePoolWithTag(nmi_context.nmi_core_context, NMI_CONTEXT_POOL);
|
|
return STATUS_ABANDONED;
|
|
}
|
|
|
|
/*
|
|
* We query the system modules each time since they can potentially
|
|
* change at any time
|
|
*/
|
|
status = GetSystemModuleInformation(&system_modules);
|
|
|
|
if (!NT_SUCCESS(status))
|
|
{
|
|
DEBUG_ERROR("Error retriving system module information");
|
|
return status;
|
|
}
|
|
status = LaunchNonMaskableInterrupt(&nmi_context);
|
|
|
|
if (!NT_SUCCESS(status))
|
|
{
|
|
DEBUG_ERROR("Error running NMI callbacks");
|
|
|
|
if (system_modules.address)
|
|
ExFreePoolWithTag(system_modules.address, SYSTEM_MODULES_POOL);
|
|
|
|
return status;
|
|
}
|
|
status = AnalyseNmiData(&nmi_context, &system_modules, Irp);
|
|
|
|
if (!NT_SUCCESS(status))
|
|
DEBUG_ERROR("Error analysing nmi data");
|
|
|
|
if (system_modules.address)
|
|
ExFreePoolWithTag(system_modules.address, SYSTEM_MODULES_POOL);
|
|
|
|
if (nmi_context.nmi_core_context)
|
|
ExFreePoolWithTag(nmi_context.nmi_core_context, NMI_CONTEXT_POOL);
|
|
|
|
if (nmi_context.stack_frames)
|
|
ExFreePoolWithTag(nmi_context.stack_frames, STACK_FRAMES_POOL);
|
|
|
|
if (nmi_context.thread_data_pool)
|
|
ExFreePoolWithTag(nmi_context.thread_data_pool, THREAD_DATA_POOL);
|
|
|
|
KeDeregisterNmiCallback(callback_handle);
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* The RundownRoutine is executed if the thread terminates before the APC was delivered to
|
|
* user mode.
|
|
*/
|
|
STATIC
|
|
VOID
|
|
ApcRundownRoutine(
|
|
_In_ PRKAPC Apc
|
|
)
|
|
{
|
|
FreeApcAndDecrementApcCount(Apc, APC_CONTEXT_ID_STACKWALK);
|
|
}
|
|
|
|
/*
|
|
* The KernelRoutine is executed in kernel mode at APC_LEVEL before the APC is delivered. This
|
|
* is also where we want to free our APC object.
|
|
*/
|
|
STATIC
|
|
VOID
|
|
ApcKernelRoutine(
|
|
_In_ PRKAPC Apc,
|
|
_Inout_ _Deref_pre_maybenull_ PKNORMAL_ROUTINE* NormalRoutine,
|
|
_Inout_ _Deref_pre_maybenull_ PVOID* NormalContext,
|
|
_Inout_ _Deref_pre_maybenull_ PVOID* SystemArgument1,
|
|
_Inout_ _Deref_pre_maybenull_ PVOID* SystemArgument2
|
|
)
|
|
{
|
|
PVOID buffer = NULL;
|
|
INT frames_captured = 0;
|
|
UINT64 stack_frame = 0;
|
|
NTSTATUS status;
|
|
BOOLEAN flag = FALSE;
|
|
PAPC_STACKWALK_CONTEXT context;
|
|
PTHREAD_LIST_ENTRY thread_list_entry = NULL;
|
|
|
|
context = (PAPC_STACKWALK_CONTEXT)Apc->NormalContext;
|
|
|
|
FindThreadListEntryByThreadAddress(KeGetCurrentThread(), &thread_list_entry);
|
|
|
|
if (!thread_list_entry)
|
|
return;
|
|
|
|
buffer = ExAllocatePool2(POOL_FLAG_NON_PAGED, STACK_FRAME_POOL_SIZE, POOL_TAG_APC);
|
|
|
|
if (!buffer)
|
|
goto free;
|
|
|
|
frames_captured = RtlCaptureStackBackTrace(
|
|
NULL,
|
|
STACK_FRAME_POOL_SIZE / sizeof(UINT64),
|
|
buffer,
|
|
NULL
|
|
);
|
|
|
|
if (frames_captured == NULL)
|
|
goto free;
|
|
|
|
for (INT index = 0; index < frames_captured; index++)
|
|
{
|
|
stack_frame = *(UINT64*)((UINT64)buffer + index * sizeof(UINT64));
|
|
|
|
/*
|
|
* Apc->NormalContext holds the address of our context data structure that we passed into
|
|
* KeInitializeApc as the last argument.
|
|
*/
|
|
status = IsInstructionPointerInInvalidRegion(
|
|
stack_frame,
|
|
context->modules,
|
|
&flag
|
|
);
|
|
|
|
if (!NT_SUCCESS(status))
|
|
{
|
|
DEBUG_ERROR("IsInstructionPointerInInvalidRegion failed with status %x", status);
|
|
goto free;
|
|
}
|
|
|
|
if (flag == FALSE)
|
|
{
|
|
PAPC_STACKWALK_REPORT report =
|
|
ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(APC_STACKWALK_REPORT), POOL_TAG_APC);
|
|
|
|
if (!report)
|
|
goto free;
|
|
|
|
report->report_code = REPORT_APC_STACKWALK;
|
|
report->kthread_address = (UINT64)KeGetCurrentThread();
|
|
report->invalid_rip = stack_frame;
|
|
|
|
RtlCopyMemory(
|
|
&report->driver,
|
|
(UINT64)stack_frame - 0x500,
|
|
APC_STACKWALK_BUFFER_SIZE
|
|
);
|
|
|
|
InsertReportToQueue(report);
|
|
}
|
|
}
|
|
|
|
free:
|
|
|
|
if (buffer)
|
|
ExFreePoolWithTag(buffer, POOL_TAG_APC);
|
|
|
|
FreeApcAndDecrementApcCount(Apc, APC_CONTEXT_ID_STACKWALK);
|
|
|
|
thread_list_entry->apc = NULL;
|
|
thread_list_entry->apc_queued = FALSE;
|
|
}
|
|
|
|
/*
|
|
* The NormalRoutine is executed in user mode when the APC is delivered.
|
|
*/
|
|
STATIC
|
|
VOID
|
|
ApcNormalRoutine(
|
|
_In_opt_ PVOID NormalContext,
|
|
_In_opt_ PVOID SystemArgument1,
|
|
_In_opt_ PVOID SystemArgument2
|
|
)
|
|
{
|
|
|
|
}
|
|
|
|
VOID
|
|
FlipKThreadMiscFlagsFlag(
|
|
_In_ PKTHREAD Thread,
|
|
_In_ LONG FlagIndex,
|
|
_In_ BOOLEAN NewValue
|
|
)
|
|
{
|
|
PLONG misc_flags = (PLONG)((UINT64)Thread + KTHREAD_MISC_FLAGS_OFFSET);
|
|
LONG mask = 1U << FlagIndex;
|
|
|
|
if (NewValue)
|
|
*misc_flags |= mask;
|
|
else
|
|
*misc_flags &= ~mask;
|
|
}
|
|
|
|
#define THREAD_STATE_TERMINATED 4
|
|
#define THREAD_STATE_WAIT 5
|
|
#define THREAD_STATE_INIT 0
|
|
|
|
STATIC
|
|
VOID
|
|
ValidateThreadViaKernelApcCallback(
|
|
_In_ PTHREAD_LIST_ENTRY ThreadListEntry,
|
|
_Inout_opt_ PVOID Context
|
|
)
|
|
{
|
|
PKAPC apc = NULL;
|
|
BOOLEAN apc_status = FALSE;
|
|
PLONG misc_flags = NULL;
|
|
PCHAR previous_mode = NULL;
|
|
PUCHAR state = NULL;
|
|
BOOLEAN apc_queueable = FALSE;
|
|
PAPC_STACKWALK_CONTEXT context = (PAPC_STACKWALK_CONTEXT)Context;
|
|
LPCSTR process_name = PsGetProcessImageFileName(ThreadListEntry->owning_process);
|
|
|
|
/* we dont want to schedule an apc to threads owned by the kernel */
|
|
if (ThreadListEntry->owning_process == PsInitialSystemProcess || !Context)
|
|
return;
|
|
|
|
/* We are not interested in these processess.. for now lol */
|
|
if (!strcmp(process_name, "svchost.exe") ||
|
|
!strcmp(process_name, "Registry") ||
|
|
!strcmp(process_name, "smss.exe") ||
|
|
!strcmp(process_name, "csrss.exe") ||
|
|
!strcmp(process_name, "explorer.exe") ||
|
|
!strcmp(process_name, "svchost.exe") ||
|
|
!strcmp(process_name, "lsass.exe") ||
|
|
!strcmp(process_name, "MemCompression"))
|
|
return;
|
|
|
|
DEBUG_LOG("Process: %s", process_name);
|
|
|
|
if (ThreadListEntry->thread == KeGetCurrentThread() || !ThreadListEntry->thread)
|
|
return;
|
|
/*
|
|
* Its possible to set the KThread->ApcQueueable flag to false ensuring that no APCs can be
|
|
* queued to the thread, as KeInsertQueueApc will check this flag before queueing an APC so
|
|
* lets make sure we flip this before before queueing ours. Since we filter out any system
|
|
* threads this should be fine... c:
|
|
*/
|
|
misc_flags = (PLONG)((UINT64)ThreadListEntry->thread + KTHREAD_MISC_FLAGS_OFFSET);
|
|
previous_mode = (PCHAR)((UINT64)ThreadListEntry->thread + KTHREAD_PREVIOUS_MODE_OFFSET);
|
|
state = (PUCHAR)((UINT64)ThreadListEntry->thread + KTHREAD_STATE_OFFSET);
|
|
|
|
/* we dont care about user mode threads */
|
|
//if (*previous_mode == UserMode)
|
|
// return;
|
|
|
|
/* todo: We should also flag all threads that have the flag set to false */
|
|
if (*misc_flags >> KTHREAD_MISC_FLAGS_APC_QUEUEABLE == FALSE)
|
|
FlipKThreadMiscFlagsFlag(ThreadListEntry->thread, KTHREAD_MISC_FLAGS_APC_QUEUEABLE, TRUE);
|
|
|
|
/* force thread into an alertable state */
|
|
if (*misc_flags >> KTHREAD_MISC_FLAGS_ALERTABLE == FALSE)
|
|
FlipKThreadMiscFlagsFlag(ThreadListEntry->thread, KTHREAD_MISC_FLAGS_ALERTABLE, TRUE);
|
|
|
|
apc = (PKAPC)ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(KAPC), POOL_TAG_APC);
|
|
|
|
if (!apc)
|
|
return;
|
|
|
|
/*
|
|
* KTHREAD->State values:
|
|
*
|
|
* 0 is INITIALIZED;
|
|
* 1 is READY;
|
|
* 2 is RUNNING;
|
|
* 3 is STANDBY;
|
|
* 4 is TERMINATED;
|
|
* 5 is WAIT;
|
|
* 6 is TRANSITION.
|
|
*
|
|
* Since we are unsafely enumerating the threads linked list, it's best just
|
|
* to make sure we don't queue an APC to a terminated thread. We also check after
|
|
* we've allocated memory for the apc to ensure the window between queuing our APC
|
|
* and checking the thread state is as small as possible.
|
|
*/
|
|
|
|
//if (*state == THREAD_STATE_TERMINATED || THREAD_STATE_INIT)
|
|
//{
|
|
// ExFreePoolWithTag(apc, POOL_TAG_APC);
|
|
// return;
|
|
//}
|
|
|
|
DEBUG_LOG("Apc: %llx", (UINT64)apc);
|
|
|
|
KeInitializeApc(
|
|
apc,
|
|
ThreadListEntry->thread,
|
|
OriginalApcEnvironment,
|
|
ApcKernelRoutine,
|
|
ApcRundownRoutine,
|
|
ApcNormalRoutine,
|
|
KernelMode,
|
|
Context
|
|
);
|
|
|
|
apc_status = KeInsertQueueApc(
|
|
apc,
|
|
NULL,
|
|
NULL,
|
|
IO_NO_INCREMENT
|
|
);
|
|
|
|
if (!apc_status)
|
|
{
|
|
DEBUG_ERROR("KeInsertQueueApc failed");
|
|
ExFreePoolWithTag(apc, POOL_TAG_APC);
|
|
return;
|
|
}
|
|
|
|
ThreadListEntry->apc = apc;
|
|
ThreadListEntry->apc_queued = TRUE;
|
|
|
|
IncrementApcCount(APC_CONTEXT_ID_STACKWALK);
|
|
}
|
|
|
|
/*
|
|
* Since NMIs are only executed on the thread that is running on each logical core, it makes
|
|
* sense to make use of APCs that, while can be masked off, provide us to easily issue a callback
|
|
* routine to threads we want a stack trace of. Hence by utilising both APCs and NMIs we get
|
|
* excellent coverage of the entire system.
|
|
*/
|
|
NTSTATUS
|
|
ValidateThreadsViaKernelApc()
|
|
{
|
|
NTSTATUS status;
|
|
PAPC_STACKWALK_CONTEXT context = NULL;
|
|
|
|
/* First, ensure we dont already have an ongoing operation */
|
|
GetApcContext(&context, APC_CONTEXT_ID_STACKWALK);
|
|
|
|
if (context)
|
|
{
|
|
DEBUG_LOG("Existing APC_STACKWALK operation already in progress.");
|
|
return STATUS_ALREADY_INITIALIZED;
|
|
}
|
|
|
|
context = ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(APC_STACKWALK_CONTEXT), POOL_TAG_APC);
|
|
|
|
if (!context)
|
|
return STATUS_MEMORY_NOT_ALLOCATED;
|
|
|
|
context->header.context_id = APC_CONTEXT_ID_STACKWALK;
|
|
context->modules = ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(SYSTEM_MODULES), POOL_TAG_APC);
|
|
|
|
if (!context->modules)
|
|
{
|
|
ExFreePoolWithTag(context, POOL_TAG_APC);
|
|
return STATUS_MEMORY_NOT_ALLOCATED;
|
|
}
|
|
|
|
status = GetSystemModuleInformation(context->modules);
|
|
|
|
if (!NT_SUCCESS(status))
|
|
{
|
|
ExFreePoolWithTag(context->modules, POOL_TAG_APC);
|
|
ExFreePoolWithTag(context, POOL_TAG_APC);
|
|
return STATUS_MEMORY_NOT_ALLOCATED;
|
|
}
|
|
|
|
status = InsertApcContext(context);
|
|
|
|
if (!NT_SUCCESS(status))
|
|
{
|
|
ExFreePoolWithTag(context->modules, POOL_TAG_APC);
|
|
ExFreePoolWithTag(context, POOL_TAG_APC);
|
|
return status;
|
|
}
|
|
|
|
context->header.allocation_in_progress = TRUE;
|
|
|
|
EnumerateThreadListWithCallbackRoutine(
|
|
ValidateThreadViaKernelApcCallback,
|
|
context
|
|
);
|
|
|
|
context->header.allocation_in_progress = FALSE;
|
|
|
|
return status;
|
|
}
|
|
|
|
VOID
|
|
FreeApcStackwalkApcContextInformation(
|
|
_Inout_ PAPC_STACKWALK_CONTEXT Context
|
|
)
|
|
{
|
|
if (Context->modules->address)
|
|
ExFreePoolWithTag(Context->modules->address, SYSTEM_MODULES_POOL);
|
|
|
|
if (Context->modules)
|
|
ExFreePoolWithTag(Context->modules, POOL_TAG_APC);
|
|
}
|
|
|