mirror-ac/driver/pool.c
lhodges1 aa80d56626 e
2023-08-28 00:34:21 +10:00

354 lines
No EOL
10 KiB
C

#include "pool.h"
#include "common.h"
#include <intrin.h>
#define POOL_TAG_LENGTH 4
CHAR PROCESS_POOL_TAG[ POOL_TAG_LENGTH ] = "\x50\x72\x6f\x63";
CHAR THREAD_POOL_TAG[ POOL_TAG_LENGTH ] = "\x54\x68\x72\x64";
CHAR DESKTOP_POOL_TAG[ POOL_TAG_LENGTH ] = "\x44\x65\x73\x6B";
CHAR WINDOW_STATIONS_POOL_TAG[ POOL_TAG_LENGTH ] = "\x57\x69\x6E\x64";
CHAR MUTANTS_POOL_TAG[ POOL_TAG_LENGTH ] = "\x4D\x75\x74\x65";
CHAR FILE_OBJECTS_POOL_TAG[ POOL_TAG_LENGTH ] = "\x46\x69\x6C\x65";
CHAR DRIVERS_POOL_TAG[ POOL_TAG_LENGTH ] = "\x44\x72\x69\x76";
CHAR SYMBOLIC_LINKS_POOL_TAG[ POOL_TAG_LENGTH ] = "\x4C\x69\x6E\x6B";
PKDDEBUGGER_DATA64 GetGlobalDebuggerData()
{
CONTEXT context = { 0 };
PDUMP_HEADER dump_header = { 0 };
UINT64 thread_state;
PKDDEBUGGER_DATA64 debugger_data = NULL;
context.ContextFlags = CONTEXT_FULL;
RtlCaptureContext( &context );
dump_header = ExAllocatePool2( POOL_FLAG_NON_PAGED, DUMP_BLOCK_SIZE, POOL_DUMP_BLOCK_TAG );
if ( !dump_header )
goto end;
KeCapturePersistentThreadState(
&context,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
dump_header
);
debugger_data = ( PKDDEBUGGER_DATA64 )ExAllocatePool2( POOL_FLAG_NON_PAGED, sizeof( KDDEBUGGER_DATA64 ), POOL_DEBUGGER_DATA_TAG );
if ( !debugger_data )
goto end;
RtlCopyMemory( debugger_data, dump_header->KdDebuggerDataBlock, sizeof( KDDEBUGGER_DATA64 ));
end:
if ( dump_header )
ExFreePoolWithTag( dump_header, POOL_DUMP_BLOCK_TAG );
return debugger_data;
}
VOID ScanPageForKernelObjectAllocation(
_In_ UINT64 PageBase,
_In_ ULONG PageSize,
_In_ LPCSTR ObjectTag
)
{
INT length = 0;
CHAR current_char;
CHAR current_sig_byte;
PPOOL_HEADER pool_header;
PEPROCESS process;
LPCSTR process_name;
if ( !PageBase || !PageSize || !ObjectTag)
return;
PAGED_CODE();
for ( INT offset = 0; offset <= PageSize - POOL_TAG_LENGTH; offset++ )
{
for ( INT sig_index = 0; sig_index < POOL_TAG_LENGTH + 1; sig_index++ )
{
if ( !MmIsAddressValid( PageBase + offset + sig_index ) )
break;
current_char = *( PCHAR )( PageBase + offset + sig_index );
current_sig_byte = ObjectTag[ sig_index ];
if ( sig_index == POOL_TAG_LENGTH )
{
pool_header = ( UINT64 )PageBase + offset - 0x04;
if ( !MmIsAddressValid( (PVOID)pool_header ) )
break;
/*
* This is some hard coded trash, need to figure out how we can differentiate different
* types of objects since they would each have a varying number of headers, object sizes etc.
*/
if ( pool_header->BlockSize * CHUNK_SIZE - sizeof(POOL_HEADER) == WIN_PROCESS_ALLOCATION_SIZE )
{
/*
* For an EPROCESS structure:
*
* Pool base + 0x00 = ?? (not sure what structure lies here)
* Pool base + 0x10 = OBJECT_HEADER_QUOTA_INFO
* Pool base + 0x30 = OBJECT_HEADER_HANDLE_INFO
* Pool base + 0x40 = OBJECT_HEADER
* Pool base + 0x70 = EPROCESS
*
* OBJECT_HEADER->InfoMask is a bit mask that tells us which optional
* headers the object has. The bits are as follows:
*
* 0x1 = OBJECT_HEADER_CREATOR_INFO
* 0x2 = OBJECT_HEADER_NAME_INFO
* 0x4 = OBJECT_HEADER_HANDLE_INFO
* 0x8 = OBJECT_HEADER_QUOTA_INFO
* 0x10 = OBJECT_HEADER_PROCESS_INFO
* 0x20 = OBJECT_HEADER_AUDIT_INFO
* 0x40 = OBJECT_HEADER_HANDLE_REVOCATION_INFO
*/
process = (PEPROCESS)( ( UINT64 )pool_header + sizeof( POOL_HEADER ) + 0x70 );
process_name = PsGetProcessImageFileName( process );
DEBUG_LOG( "Found process: %s", process_name );
}
break;
}
if ( current_char != current_sig_byte )
break;
}
}
}
/*
* Using MmGetPhysicalMemoryRangesEx2(), we can get a block of structures that
* describe the physical memory layout. With each physical page base we are going
* to enumerate, we want to make sure it lies within an appropriate region of
* physical memory, so this function is to check for exactly that.
*/
BOOLEAN IsPhysicalAddressInPhysicalMemoryRange(
_In_ UINT64 PhysicalAddress,
_In_ PPHYSICAL_MEMORY_RANGE PhysicalMemoryRanges
)
{
ULONG page_index = 0;
UINT64 start_address = 0;
UINT64 end_address = 0;
if ( !PhysicalAddress || !PhysicalMemoryRanges )
return FALSE;
while ( PhysicalMemoryRanges[ page_index ].NumberOfBytes.QuadPart != NULL )
{
start_address = PhysicalMemoryRanges[ page_index ].BaseAddress.QuadPart;
end_address = start_address + PhysicalMemoryRanges[ page_index ].NumberOfBytes.QuadPart;
if ( PhysicalAddress >= start_address && PhysicalAddress <= end_address )
return TRUE;
page_index++;
}
return FALSE;
}
/*
* This is your basic page table walk function. On intel systems, paging has 4 levels,
* each table holds 512 entries with a total size of 0x1000 (512 * sizeof(QWORD)). Each entry
* in each table contains a value with a subset bitfield containing the physical address
* of the base of the next table in the structure. So for example, a PML4 entry contains
* a physical address that points to the base of the PDPT table, it is the same for a PDPT
* entry -> PD base and so on.
*
* However, as with all good things Windows has implemented security features meaning
* we cannot use functions such as MmCopyMemory or MmMapIoSpace on paging structures,
* so we must find another way to walk the pages. Luckily for us, there exists
* MmGetVirtualForPhysical. This function is self explanatory and returns the corresponding
* virtual address given a physical address. What this means is that we can extract a page
* entry physical address, pass it to MmGetVirtualForPhysical which returns us the virtual
* address of the base of the next page structure. This is because page tables are still
* mapped by the kernel and exist in virtual memory just like everything else and hence
* reading the value at all 512 entries from the virtual base will give us the equivalent
* value as directly reading the physical address.
*
* Using this, we essentially walk the page tables as any regular translation would
* except instead of simply reading the physical we translate it to a virtual address
* and extract the physical address from the value at each virtual address page entry.
*/
VOID WalkKernelPageTables()
{
CR3 cr3;
PML4E pml4_base;
PML4E pml4_entry;
UINT64 pdpt_base;
UINT64 pd_base;
UINT64 pt_base;
PDPTE pdpt_entry;
PDPTE_LARGE pdpt_large_entry;
PDE pd_entry;
PDE_LARGE pd_large_entry;
PTE pt_entry;
UINT64 base_physical_page;
UINT64 base_virtual_page;
PHYSICAL_ADDRESS physical;
PPHYSICAL_MEMORY_RANGE physical_memory_ranges;
KIRQL irql;
physical_memory_ranges = MmGetPhysicalMemoryRangesEx2( NULL, NULL );
if ( physical_memory_ranges == NULL )
{
DEBUG_ERROR( "LOL stupid cunt not working" );
return;
}
/* raise our irql to ensure we arent preempted by NOOB threads */
KeRaiseIrql( DISPATCH_LEVEL, &irql );
/* disable interrupts to prevent any funny business occuring */
_disable();
cr3.BitAddress = __readcr3();
physical.QuadPart = cr3.Bits.PhysicalAddress << PAGE_4KB_SHIFT;
pml4_base.BitAddress = MmGetVirtualForPhysical( physical );
if ( !MmIsAddressValid( pml4_base.BitAddress ) || !pml4_base.BitAddress )
return;
for ( INT pml4_index = 0; pml4_index < PML4_ENTRY_COUNT; pml4_index++ )
{
pml4_entry.BitAddress = *(UINT64*)( pml4_base.BitAddress + pml4_index * sizeof( UINT64 ) );
if ( pml4_entry.Bits.Present == NULL )
continue;
physical.QuadPart = pml4_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT;
pdpt_base = MmGetVirtualForPhysical( physical );
if ( !pdpt_base || !MmIsAddressValid( pdpt_base ) )
continue;
for ( INT pdpt_index = 0; pdpt_index < PDPT_ENTRY_COUNT; pdpt_index++ )
{
pdpt_entry.BitAddress = *( UINT64* )( pdpt_base + pdpt_index * sizeof( UINT64 ) );
if ( pdpt_entry.Bits.Present == NULL )
continue;
if ( IS_LARGE_PAGE( pdpt_entry.BitAddress ) )
{
/* 2GB size page */
pdpt_large_entry.BitAddress = pdpt_entry.BitAddress;
continue;
}
physical.QuadPart = pdpt_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT;
pd_base = MmGetVirtualForPhysical( physical );
if ( !pd_base || !MmIsAddressValid( pd_base ) )
continue;
for ( INT pd_index = 0; pd_index < PD_ENTRY_COUNT; pd_index++ )
{
pd_entry.BitAddress = *( UINT64* )( pd_base + pd_index * sizeof( UINT64 ) );
if ( pd_entry.Bits.Present == NULL )
continue;
if ( IS_LARGE_PAGE( pd_entry.BitAddress ) )
{
/* 2MB size page */
pd_large_entry.BitAddress = pd_entry.BitAddress;
continue;
}
physical.QuadPart = pd_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT;
pt_base = MmGetVirtualForPhysical( physical );
if ( !pt_base || !MmIsAddressValid( pt_base ) )
continue;
for ( INT pt_index = 0; pt_index < PT_ENTRY_COUNT; pt_index++ )
{
pt_entry.BitAddress = *( UINT64* )( pt_base + pt_index * sizeof( UINT64 ) );
if ( pt_entry.Bits.Present == NULL )
continue;
physical.QuadPart = pt_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT;
/* if the page base isnt in a legit region, go next */
if ( IsPhysicalAddressInPhysicalMemoryRange( physical.QuadPart, physical_memory_ranges ) == FALSE )
continue;
base_virtual_page = MmGetVirtualForPhysical( physical );
/* stupid fucking intellisense error GO AWAY! */
if ( base_virtual_page == NULL || !MmIsAddressValid( base_virtual_page ) )
continue;
ScanPageForKernelObjectAllocation( base_virtual_page, PAGE_BASE_SIZE, (LPCSTR)PROCESS_POOL_TAG );
}
}
}
}
_enable();
KeLowerIrql( irql );
DEBUG_LOG( "Finished scanning memory" );
}
VOID ScanNonPagedPoolForProcessTags()
{
NTSTATUS status;
PKDDEBUGGER_DATA64 debugger_data = NULL;
UINT64 non_paged_pool_start = NULL;
UINT64 non_paged_pool_end = NULL;
/* must free this */
debugger_data = GetGlobalDebuggerData();
if ( debugger_data == NULL )
{
DEBUG_ERROR( "Debugger data is null" );
return STATUS_ABANDONED;
}
non_paged_pool_start = debugger_data->MmNonPagedPoolStart;
non_paged_pool_end = debugger_data->MmNonPagedPoolEnd;
DEBUG_LOG( "NonPagedPool start: %llx, end %llx", non_paged_pool_start, non_paged_pool_end );
WalkKernelPageTables();
/* for ( ; non_paged_pool_start <= non_paged_pool_end; non_paged_pool_start++ )
{
CHAR current_byte = *( CHAR* )non_paged_pool_start;
DEBUG_LOG( "Current byte: %c", current_byte );
*/
ExFreePoolWithTag( debugger_data, POOL_DEBUGGER_DATA_TAG );
}