mirror-ac/driver/pool.c
lhodges1 9596e0e1c8 e
2023-09-04 03:33:27 +10:00

565 lines
No EOL
16 KiB
C

#include "pool.h"
#include "common.h"
#include "callbacks.h"
#include <intrin.h>
#define POOL_TAG_LENGTH 4
#define EXECUTIVE_OBJECT_COUNT 8
#define INDEX_PROCESS_POOL_TAG 0
#define INDEX_THREAD_POOL_TAG 1
#define INDEX_DESKTOP_POOL_TAG 2
#define INDEX_WINDOW_STATIONS_POOL_TAG 3
#define INDEX_MUTANTS_POOL_TAG 4
#define INDEX_FILE_OBJECTS_POOL_TAG 5
#define INDEX_DRIVERS_POOL_TAG 6
#define INDEX_SYMBOLIC_LINKS_POOL_TAG 7
CHAR EXECUTIVE_OBJECT_POOL_TAGS[ EXECUTIVE_OBJECT_COUNT ][ POOL_TAG_LENGTH ] =
{
"\x50\x72\x6f\x63", /* Process */
"\x54\x68\x72\x64", /* Thread */
"\x44\x65\x73\x6B", /* Desktop */
"\x57\x69\x6E\x64", /* Windows Station */
"\x4D\x75\x74\x65", /* Mutants i.e mutex etc. */
"\x46\x69\x6C\x65", /* File objects */
"\x44\x72\x69\x76", /* Drivers */
"\x4C\x69\x6E\x6B" /* Symbolic links */
};
PVOID process_buffer = NULL;
ULONG process_count = NULL;
PKDDEBUGGER_DATA64 GetGlobalDebuggerData()
{
CONTEXT context = { 0 };
PDUMP_HEADER dump_header = { 0 };
UINT64 thread_state;
PKDDEBUGGER_DATA64 debugger_data = NULL;
context.ContextFlags = CONTEXT_FULL;
RtlCaptureContext( &context );
dump_header = ExAllocatePool2( POOL_FLAG_NON_PAGED, DUMP_BLOCK_SIZE, POOL_DUMP_BLOCK_TAG );
if ( !dump_header )
goto end;
KeCapturePersistentThreadState(
&context,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
dump_header
);
debugger_data = ( PKDDEBUGGER_DATA64 )ExAllocatePool2( POOL_FLAG_NON_PAGED, sizeof( KDDEBUGGER_DATA64 ), POOL_DEBUGGER_DATA_TAG );
if ( !debugger_data )
goto end;
RtlCopyMemory( debugger_data, dump_header->KdDebuggerDataBlock, sizeof( KDDEBUGGER_DATA64 ));
end:
if ( dump_header )
ExFreePoolWithTag( dump_header, POOL_DUMP_BLOCK_TAG );
return debugger_data;
}
VOID GetPsActiveProcessHead(
_In_ PUINT64 Address
)
{
/* TODO: have a global debugger pool here since shit aint really change */
PKDDEBUGGER_DATA64 debugger_data = GetGlobalDebuggerData();
if ( !debugger_data )
return;
*Address = *(UINT64*)( debugger_data->PsActiveProcessHead );
ExFreePoolWithTag( debugger_data, POOL_DEBUGGER_DATA_TAG );
}
/*
* For ~90% of EPROCESS structures the header layout is as follows:
*
* Pool base + 0x00 = ?? (not sure what structure lies here)
* Pool base + 0x10 = OBJECT_HEADER_QUOTA_INFO
* Pool base + 0x30 = OBJECT_HEADER_HANDLE_INFO
* Pool base + 0x40 = OBJECT_HEADER
* Pool base + 0x70 = EPROCESS
*
* OBJECT_HEADER->InfoMask is a bit mask that tells us which optional
* headers the object has. The bits are as follows:
*
* 0x1 = OBJECT_HEADER_CREATOR_INFO
* 0x2 = OBJECT_HEADER_NAME_INFO
* 0x4 = OBJECT_HEADER_HANDLE_INFO
* 0x8 = OBJECT_HEADER_QUOTA_INFO
* 0x10 = OBJECT_HEADER_PROCESS_INFO
* 0x20 = OBJECT_HEADER_AUDIT_INFO
* 0x40 = OBJECT_HEADER_HANDLE_REVOCATION_INFO
*/
/*
* Idea: since we don't know the number of headers or the exact memory layout of the object
* header section for these proc allocations, we can form an estimate address of base + 0x70
* and then iterate the loaded process list and if theres an address within say 0x50 of it we
* can assume that the process is legitmate. Then to find an unlinked process, it wouldn't
* exist in the loaded module list, check that it hasnt been deallocated and then focus on
* scanning it for name etc. Maybe scan for .exe extension?
*
* Also use the full name so we get the file extension and path not the 15 char long one
*/
VOID ScanPageForKernelObjectAllocation(
_In_ UINT64 PageBase,
_In_ ULONG PageSize,
_In_ ULONG ObjectIndex,
_In_ PVOID AddressBuffer
)
{
INT length = 0;
CHAR current_char;
CHAR current_sig_byte;
PPOOL_HEADER pool_header;
PEPROCESS process = NULL;
LPCSTR process_name;
PUINT64 address_list;
ULONG allocation_size;
if ( !PageBase || !PageSize )
return;
for ( INT offset = 0; offset <= PageSize - POOL_TAG_LENGTH; offset++ )
{
for ( INT sig_index = 0; sig_index < POOL_TAG_LENGTH + 1; sig_index++ )
{
if ( !MmIsAddressValid( PageBase + offset + sig_index ) )
break;
current_char = *( PCHAR )( PageBase + offset + sig_index );
current_sig_byte = EXECUTIVE_OBJECT_POOL_TAGS[ ObjectIndex ][ sig_index ];
if ( sig_index == POOL_TAG_LENGTH )
{
pool_header = ( UINT64 )PageBase + offset - 0x04;
if ( !MmIsAddressValid( (PVOID)pool_header ) )
break;
/*
* This is some hard coded trash, need to figure out how we can differentiate different
* types of objects since they would each have a varying number of headers, object sizes etc.
*
* For now we check 2 sizes, one of which is 0x10 smaller then the other (the unknown header?)
* and make sure the pool is still allocated by checking the PoolType != 0.
*
* more: https://www.imf-conference.org/imf2006/23_Schuster-PoolAllocations.pdf
*/
allocation_size = pool_header->BlockSize * CHUNK_SIZE - sizeof( POOL_HEADER );
if ( ( allocation_size == WIN_PROCESS_ALLOCATION_SIZE ||
allocation_size == WIN_PROCESS_ALLOCATION_SIZE_2 ) &&
pool_header->PoolType != NULL )
{
if ( allocation_size == WIN_PROCESS_ALLOCATION_SIZE )
process = process = ( PEPROCESS )( ( UINT64 )pool_header + sizeof( POOL_HEADER ) + 0x70 );
if ( allocation_size == WIN_PROCESS_ALLOCATION_SIZE_2 )
process = process = ( PEPROCESS )( ( UINT64 )pool_header + sizeof( POOL_HEADER ) + 0x80 );
if ( process == NULL )
{
DEBUG_LOG( "Process size is different to expected cos we hardcoded dis trash" );
break;
}
address_list = ( PUINT64 )AddressBuffer;
for ( INT i = 0; i < process_count; i++ )
{
if ( address_list[ i ] == NULL )
{
address_list[ i ] = ( UINT64 )process;
break;
}
}
}
break;
}
if ( current_char != current_sig_byte )
break;
}
}
}
VOID EnumerateKernelLargePages(
_In_ UINT64 PageBase,
_In_ ULONG PageSize,
_In_ PVOID AddressBuffer,
_In_ ULONG ObjectIndex
)
{
for ( INT page_index = 0; page_index < PageSize; page_index++ )
{
ScanPageForKernelObjectAllocation(
PageBase + ( page_index * PageSize ),
PAGE_SIZE,
ObjectIndex,
AddressBuffer
);
}
}
/*
* Using MmGetPhysicalMemoryRangesEx2(), we can get a block of structures that
* describe the physical memory layout. With each physical page base we are going
* to enumerate, we want to make sure it lies within an appropriate region of
* physical memory, so this function is to check for exactly that.
*/
BOOLEAN IsPhysicalAddressInPhysicalMemoryRange(
_In_ UINT64 PhysicalAddress,
_In_ PPHYSICAL_MEMORY_RANGE PhysicalMemoryRanges
)
{
ULONG page_index = 0;
UINT64 start_address = 0;
UINT64 end_address = 0;
while ( PhysicalMemoryRanges[ page_index ].NumberOfBytes.QuadPart != NULL )
{
start_address = PhysicalMemoryRanges[ page_index ].BaseAddress.QuadPart;
end_address = start_address + PhysicalMemoryRanges[ page_index ].NumberOfBytes.QuadPart;
if ( PhysicalAddress >= start_address && PhysicalAddress <= end_address )
return TRUE;
page_index++;
}
return FALSE;
}
/*
* This is your basic page table walk function. On intel systems, paging has 4 levels,
* each table holds 512 entries with a total size of 0x1000 (512 * sizeof(QWORD)). Each entry
* in each table contains a value with a subset bitfield containing the physical address
* of the base of the next table in the structure. So for example, a PML4 entry contains
* a physical address that points to the base of the PDPT table, it is the same for a PDPT
* entry -> PD base and so on.
*
* However, as with all good things Windows has implemented security features meaning
* we cannot use functions such as MmCopyMemory or MmMapIoSpace on paging structures,
* so we must find another way to walk the pages. Luckily for us, there exists
* MmGetVirtualForPhysical. This function is self explanatory and returns the corresponding
* virtual address given a physical address. What this means is that we can extract a page
* entry physical address, pass it to MmGetVirtualForPhysical which returns us the virtual
* address of the base of the next page structure. This is because page tables are still
* mapped by the kernel and exist in virtual memory just like everything else and hence
* reading the value at all 512 entries from the virtual base will give us the equivalent
* value as directly reading the physical address.
*
* Using this, we essentially walk the page tables as any regular translation would
* except instead of simply reading the physical we translate it to a virtual address
* and extract the physical address from the value at each virtual address page entry.
*/
VOID WalkKernelPageTables(PVOID AddressBuffer)
{
CR3 cr3;
PML4E pml4_base;
PML4E pml4_entry;
UINT64 pdpt_base;
UINT64 pd_base;
UINT64 pt_base;
PDPTE pdpt_entry;
PDPTE_LARGE pdpt_large_entry;
PDE pd_entry;
PDE_LARGE pd_large_entry;
PTE pt_entry;
UINT64 base_physical_page;
UINT64 base_virtual_page;
UINT64 base_2mb_virtual_page;
UINT64 base_1gb_virtual_page;
PHYSICAL_ADDRESS physical;
PPHYSICAL_MEMORY_RANGE physical_memory_ranges;
physical_memory_ranges = MmGetPhysicalMemoryRangesEx2( NULL, NULL );
if ( physical_memory_ranges == NULL )
{
DEBUG_ERROR( "LOL stupid cunt not working" );
return;
}
cr3.BitAddress = __readcr3();
physical.QuadPart = cr3.Bits.PhysicalAddress << PAGE_4KB_SHIFT;
pml4_base.BitAddress = MmGetVirtualForPhysical( physical );
if ( !MmIsAddressValid( pml4_base.BitAddress ) || !pml4_base.BitAddress )
return;
for ( INT pml4_index = 0; pml4_index < PML4_ENTRY_COUNT; pml4_index++ )
{
if ( !MmIsAddressValid( pml4_base.BitAddress + pml4_index * sizeof( UINT64 ) ) )
continue;
pml4_entry.BitAddress = *(UINT64*)( pml4_base.BitAddress + pml4_index * sizeof( UINT64 ) );
if ( pml4_entry.Bits.Present == NULL )
continue;
physical.QuadPart = pml4_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT;
pdpt_base = MmGetVirtualForPhysical( physical );
if ( !pdpt_base || !MmIsAddressValid( pdpt_base ) )
continue;
for ( INT pdpt_index = 0; pdpt_index < PDPT_ENTRY_COUNT; pdpt_index++ )
{
if ( !MmIsAddressValid( pdpt_base + pdpt_index * sizeof( UINT64 ) ) )
continue;
pdpt_entry.BitAddress = *( UINT64* )( pdpt_base + pdpt_index * sizeof( UINT64 ) );
if ( pdpt_entry.Bits.Present == NULL )
continue;
if ( IS_LARGE_PAGE( pdpt_entry.BitAddress ) )
{
/* 1gb size page */
pdpt_large_entry.BitAddress = pdpt_entry.BitAddress;
physical.QuadPart = pdpt_large_entry.Bits.PhysicalAddress << PAGE_1GB_SHIFT;
if ( IsPhysicalAddressInPhysicalMemoryRange( physical.QuadPart, physical_memory_ranges ) == FALSE )
continue;
base_1gb_virtual_page = MmGetVirtualForPhysical( physical );
if (!base_1gb_virtual_page || !MmIsAddressValid( base_1gb_virtual_page ) )
continue;
EnumerateKernelLargePages(
base_1gb_virtual_page,
LARGE_PAGE_1GB_ENTRIES,
AddressBuffer,
INDEX_PROCESS_POOL_TAG
);
continue;
}
physical.QuadPart = pdpt_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT;
pd_base = MmGetVirtualForPhysical( physical );
if ( !pd_base || !MmIsAddressValid( pd_base ) )
continue;
for ( INT pd_index = 0; pd_index < PD_ENTRY_COUNT; pd_index++ )
{
if ( !MmIsAddressValid( pd_base + pd_index * sizeof( UINT64 ) ) )
continue;
pd_entry.BitAddress = *( UINT64* )( pd_base + pd_index * sizeof( UINT64 ) );
if ( pd_entry.Bits.Present == NULL )
continue;
if ( IS_LARGE_PAGE( pd_entry.BitAddress ) )
{
/* 2MB size page */
pd_large_entry.BitAddress = pd_entry.BitAddress;
physical.QuadPart = pd_large_entry.Bits.PhysicalAddress << PAGE_2MB_SHIFT;
if ( IsPhysicalAddressInPhysicalMemoryRange( physical.QuadPart, physical_memory_ranges ) == FALSE )
continue;
base_2mb_virtual_page = MmGetVirtualForPhysical( physical );
if ( !base_2mb_virtual_page || !MmIsAddressValid( base_2mb_virtual_page ) )
continue;
EnumerateKernelLargePages(
base_2mb_virtual_page,
LARGE_PAGE_2MB_ENTRIES,
AddressBuffer,
INDEX_PROCESS_POOL_TAG
);
continue;
}
physical.QuadPart = pd_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT;
if ( !MmIsAddressValid( pd_entry.BitAddress ) )
continue;
pt_base = MmGetVirtualForPhysical( physical );
if ( !pt_base || !MmIsAddressValid( pt_base ) )
continue;
for ( INT pt_index = 0; pt_index < PT_ENTRY_COUNT; pt_index++ )
{
if ( !MmIsAddressValid( pt_base + pt_index * sizeof( UINT64 ) ) )
continue;
pt_entry.BitAddress = *( UINT64* )( pt_base + pt_index * sizeof( UINT64 ) );
if ( pt_entry.Bits.Present == NULL )
continue;
physical.QuadPart = pt_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT;
/* if the page base isnt in a legit region, go next */
if ( IsPhysicalAddressInPhysicalMemoryRange( physical.QuadPart, physical_memory_ranges ) == FALSE )
continue;
base_virtual_page = MmGetVirtualForPhysical( physical );
/* stupid fucking intellisense error GO AWAY! */
if ( base_virtual_page == NULL || !MmIsAddressValid( base_virtual_page ) )
continue;
ScanPageForKernelObjectAllocation(
base_virtual_page,
PAGE_BASE_SIZE,
INDEX_PROCESS_POOL_TAG,
AddressBuffer
);
}
}
}
}
DEBUG_LOG( "Finished scanning memory" );
}
VOID IncrementProcessCounter()
{
process_count++;
}
VOID CheckIfProcessAllocationIsInProcessList(
_In_ PEPROCESS Process
)
{
PUINT64 allocation_address;
for ( INT i = 0; i < process_count; i++ )
{
allocation_address = ( PUINT64 )process_buffer;
if ( ( UINT64 )Process >= allocation_address[ i ] - PROCESS_OBJECT_ALLOCATION_MARGIN &&
( UINT64 )Process <= allocation_address[ i ] + PROCESS_OBJECT_ALLOCATION_MARGIN )
{
RtlZeroMemory( ( UINT64 )process_buffer + i * sizeof( UINT64 ), sizeof( UINT64 ) );
}
}
}
/*
* Plan:
* 1. Find number of running procs and allocate a pool equal to size 1.5 * num_procs.
* 2. Walk the pages tables and store all found process allocation base addresses in this pool
* 3. Enumerate the process allocation list and make sure that each allocation is within
* 0x50 bytes of the EPROCESS base of one of the running processes.
* 4. If there exists a process allocation that doesn't have a matching running process,
* make sure it hasnt been deallocated
* 5. If it hasn't been deallocated, search for the .exe via the long string file name
* and report. Maybe do some further analysis can figure this out once we get there.
*/
NTSTATUS FindUnlinkedProcesses(
_In_ PIRP Irp
)
{
PUINT64 allocation_address;
PINVALID_PROCESS_ALLOCATION_REPORT report_buffer = NULL;
EnumerateProcessListWithCallbackFunction(
IncrementProcessCounter
);
if ( process_count == NULL )
{
DEBUG_ERROR( "Faield to get process count " );
return STATUS_ABANDONED;
}
process_buffer = ExAllocatePool2( POOL_FLAG_NON_PAGED, process_count * 2 * sizeof( UINT64 ), PROCESS_ADDRESS_LIST_TAG );
if ( !process_buffer )
return STATUS_ABANDONED;
WalkKernelPageTables( process_buffer );
EnumerateProcessListWithCallbackFunction(
CheckIfProcessAllocationIsInProcessList
);
allocation_address = ( PUINT64 )process_buffer;
for ( INT i = 0; i < process_count; i++ )
{
if ( allocation_address[ i ] == NULL )
continue;
/* process has been deallocated yet the pool header hasnt been updated? */
if ( *( UINT8* )( allocation_address[ i ] + EPROCESS_VIRTUAL_SIZE_OFFSET ) == 0x00 )
continue;
/* report / do some further analysis */
DEBUG_ERROR( "INVALID POOL proc OMGGG" );
report_buffer = ExAllocatePool2( POOL_FLAG_NON_PAGED, sizeof( INVALID_PROCESS_ALLOCATION_REPORT ), INVALID_PROCESS_REPORT_TAG );
if ( !report_buffer )
goto end;
report_buffer->report_code = REPORT_INVALID_PROCESS_ALLOCATION;
RtlCopyMemory(
report_buffer->process,
allocation_address[i],
REPORT_INVALID_PROCESS_BUFFER_SIZE );
Irp->IoStatus.Information = sizeof( INVALID_PROCESS_ALLOCATION_REPORT );
RtlCopyMemory(
Irp->AssociatedIrp.SystemBuffer,
report_buffer,
sizeof( INVALID_PROCESS_ALLOCATION_REPORT ) );
}
end:
if (report_buffer )
ExFreePoolWithTag( report_buffer, INVALID_PROCESS_REPORT_TAG );
if (process_buffer )
ExFreePoolWithTag( process_buffer, PROCESS_ADDRESS_LIST_TAG );
process_count = NULL;
process_buffer = NULL;
return STATUS_SUCCESS;
}