mirror-ac/driver/queue.c
2023-12-13 15:06:27 +11:00

414 lines
12 KiB
C

#include "queue.h"
#include "callbacks.h"
#include "driver.h"
#include "queue.h"
#include "pool.h"
#include "thread.h"
#include "ioctl.h"
#include "common.h"
/*
* This mutex is to prevent a new item being pushed to the queue
* while the HandlePeriodicCallbackReportQueue is iterating through
* the objects. This can be an issue because the spinlock is released
* after each report is placed in the IRP buffer which means a new report
* can be pushed into the queue before the next iteration can take ownership
* of the spinlock.
*/
typedef struct _REPORT_QUEUE_CONFIGURATION
{
QUEUE_HEAD head;
volatile BOOLEAN is_driver_unloading;
KGUARDED_MUTEX lock;
} REPORT_QUEUE_CONFIGURATION, *PREPORT_QUEUE_CONFIGURATION;
REPORT_QUEUE_CONFIGURATION report_queue_config = {0};
VOID
InitialiseGlobalReportQueue(_Out_ PBOOLEAN Status)
{
report_queue_config.head.start = NULL;
report_queue_config.head.end = NULL;
report_queue_config.head.entries = 0;
report_queue_config.is_driver_unloading = FALSE;
KeInitializeGuardedMutex(&report_queue_config.head.lock);
KeInitializeGuardedMutex(&report_queue_config.lock);
*Status = TRUE;
}
// PQUEUE_HEAD QueueCreate()
//{
// PQUEUE_HEAD head = ExAllocatePool2( POOL_FLAG_NON_PAGED, sizeof( QUEUE_HEAD ),
//QUEUE_POOL_TAG );
//
// if ( !head )
// return NULL;
//
// head->end = NULL;
// head->start = NULL;
// head->entries = 0;
//
// KeInitializeSpinLock( &head->lock );
//
// return head;
// }
_IRQL_requires_max_(APC_LEVEL)
_Acquires_lock_(_Lock_kind_mutex_)
_Releases_lock_(_Lock_kind_mutex_)
VOID
QueuePush(_Inout_ PQUEUE_HEAD Head, _In_ PVOID Data)
{
KeAcquireGuardedMutex(&Head->lock);
PQUEUE_NODE temp = ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(QUEUE_NODE), QUEUE_POOL_TAG);
if (!temp)
goto end;
Head->entries += 1;
temp->data = Data;
if (Head->end != NULL)
Head->end->next = temp;
Head->end = temp;
if (Head->start == NULL)
Head->start = temp;
end:
KeReleaseGuardedMutex(&Head->lock);
}
_IRQL_requires_max_(APC_LEVEL)
_Acquires_lock_(_Lock_kind_mutex_)
_Releases_lock_(_Lock_kind_mutex_)
PVOID
QueuePop(_Inout_ PQUEUE_HEAD Head)
{
KeAcquireGuardedMutex(&Head->lock);
PVOID data = NULL;
PQUEUE_NODE temp = Head->start;
if (temp == NULL)
goto end;
Head->entries = Head->entries - 1;
data = temp->data;
Head->start = temp->next;
if (Head->end == temp)
Head->end = NULL;
ExFreePoolWithTag(temp, QUEUE_POOL_TAG);
end:
KeReleaseGuardedMutex(&Head->lock);
return data;
}
_IRQL_requires_max_(APC_LEVEL)
_Acquires_lock_(_Lock_kind_mutex_)
_Releases_lock_(_Lock_kind_mutex_)
VOID
InsertReportToQueue(_In_ PVOID Report)
{
if (InterlockedExchange(&report_queue_config.is_driver_unloading,
report_queue_config.is_driver_unloading))
return;
KeAcquireGuardedMutex(&report_queue_config.lock);
QueuePush(&report_queue_config.head, Report);
KeReleaseGuardedMutex(&report_queue_config.lock);
}
_IRQL_requires_max_(APC_LEVEL)
_Acquires_lock_(_Lock_kind_mutex_)
_Releases_lock_(_Lock_kind_mutex_)
VOID
FreeGlobalReportQueueObjects()
{
InterlockedExchange(&report_queue_config.is_driver_unloading, TRUE);
KeAcquireGuardedMutex(&report_queue_config.lock);
PVOID report = QueuePop(&report_queue_config.head);
while (report != NULL)
{
ExFreePoolWithTag(report, REPORT_POOL_TAG);
report = QueuePop(&report_queue_config.head);
DEBUG_LOG("Queu Unload Remaining Entries: %i", report_queue_config.head.entries);
}
end:
KeReleaseGuardedMutex(&report_queue_config.lock);
}
/*
* This function handles sending all the pending reports in the global report
* queue to the usermode application. This function is called periodically by the
* usermode application. The reason I have implemented this is because as this application
* expanded, it became apparent that some of the driver functions will generate multiple
* reports as a result of a single usermode request and hence it makes dealing with
* reports generated from ObRegisterCallbacks for example much easier.
*/
_IRQL_requires_max_(APC_LEVEL)
_Acquires_lock_(_Lock_kind_mutex_)
_Releases_lock_(_Lock_kind_mutex_)
NTSTATUS
HandlePeriodicGlobalReportQueueQuery(_Inout_ PIRP Irp)
{
INT count = 0;
NTSTATUS status = STATUS_ABANDONED;
PVOID report = NULL;
SIZE_T total_size = 0;
PVOID report_buffer = NULL;
ULONG report_buffer_size = 0;
PREPORT_HEADER report_header = NULL;
GLOBAL_REPORT_QUEUE_HEADER header = {0};
KeAcquireGuardedMutex(&report_queue_config.lock);
report_buffer_size = sizeof(INVALID_PROCESS_ALLOCATION_REPORT) * MAX_REPORTS_PER_IRP +
sizeof(GLOBAL_REPORT_QUEUE_HEADER);
status = ValidateIrpOutputBuffer(Irp, report_buffer_size);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("Failed to validate Irp output buffer");
KeReleaseGuardedMutex(&report_queue_config.lock);
return status;
}
report_buffer =
ExAllocatePool2(POOL_FLAG_NON_PAGED, report_buffer_size, REPORT_QUEUE_TEMP_BUFFER_TAG);
if (!report_buffer)
{
KeReleaseGuardedMutex(&report_queue_config.lock);
return STATUS_MEMORY_NOT_ALLOCATED;
}
report = QueuePop(&report_queue_config.head);
if (report == NULL)
{
DEBUG_LOG("callback report queue is empty, returning");
goto end;
}
while (report != NULL)
{
if (count >= MAX_REPORTS_PER_IRP)
goto end;
report_header = (PREPORT_HEADER)report;
switch (report_header->report_id)
{
case REPORT_ILLEGAL_HANDLE_OPERATION:
RtlCopyMemory((UINT64)report_buffer + sizeof(GLOBAL_REPORT_QUEUE_HEADER) +
total_size,
report,
sizeof(OPEN_HANDLE_FAILURE_REPORT));
total_size += sizeof(OPEN_HANDLE_FAILURE_REPORT);
break;
case REPORT_ILLEGAL_ATTACH_PROCESS:
RtlCopyMemory((UINT64)report_buffer + sizeof(GLOBAL_REPORT_QUEUE_HEADER) +
total_size,
report,
sizeof(ATTACH_PROCESS_REPORT));
total_size += sizeof(ATTACH_PROCESS_REPORT);
break;
case REPORT_INVALID_PROCESS_ALLOCATION:
RtlCopyMemory((UINT64)report_buffer + sizeof(GLOBAL_REPORT_QUEUE_HEADER) +
total_size,
report,
sizeof(INVALID_PROCESS_ALLOCATION_REPORT));
total_size += sizeof(INVALID_PROCESS_ALLOCATION_REPORT);
break;
case REPORT_APC_STACKWALK:
RtlCopyMemory((UINT64)report_buffer + sizeof(GLOBAL_REPORT_QUEUE_HEADER) +
total_size,
report,
sizeof(APC_STACKWALK_REPORT));
total_size += sizeof(APC_STACKWALK_REPORT);
break;
case REPORT_HIDDEN_SYSTEM_THREAD:
RtlCopyMemory((UINT64)report_buffer + sizeof(GLOBAL_REPORT_QUEUE_HEADER) +
total_size,
report,
sizeof(HIDDEN_SYSTEM_THREAD_REPORT));
total_size += sizeof(HIDDEN_SYSTEM_THREAD_REPORT);
break;
}
/* QueuePop frees the node, but we still need to free the returned data */
ExFreePoolWithTag(report, REPORT_POOL_TAG);
report = QueuePop(&report_queue_config.head);
count += 1;
}
end:
KeReleaseGuardedMutex(&report_queue_config.lock);
Irp->IoStatus.Information = sizeof(GLOBAL_REPORT_QUEUE_HEADER) + total_size;
header.count = count;
RtlCopyMemory(report_buffer, &header, sizeof(GLOBAL_REPORT_QUEUE_HEADER));
RtlCopyMemory(Irp->AssociatedIrp.SystemBuffer,
report_buffer,
sizeof(GLOBAL_REPORT_QUEUE_HEADER) + total_size);
if (report_buffer)
ExFreePoolWithTag(report_buffer, REPORT_QUEUE_TEMP_BUFFER_TAG);
DEBUG_LOG("Moved all reports into the IRP, sending !");
return STATUS_SUCCESS;
}
/*
* Simple thread safe linked list implementation. All structures should begin
* with a SINGLE_LIST_ENTRY structure provided by the windows API. for example:
*
* typedef struct _LIST_ENTRY_STRUCTURE
* {
* SINGLE_LIST_ENTRY list;
* PVOID address;
* UINT32 data;
* ...
* };
*
* This common structure layout allows us to pass in a callback routine when freeing
* allowing immense flexibility to ensure we can free and/or deference any objects
* that are referenced in said object.
*
* I've opted to use a mutex rather then a spinlock since there are many times we
* enumerate the list for extended periods aswell as queue up many insertions at
* once.
*/
VOID
ListInit(_Inout_ PSINGLE_LIST_ENTRY Head, _Inout_ PKGUARDED_MUTEX Lock)
{
KeInitializeGuardedMutex(Lock);
Head->Next = NULL;
}
_Acquires_lock_(_Lock_kind_mutex_)
_Releases_lock_(_Lock_kind_mutex_)
VOID
ListInsert(_Inout_ PSINGLE_LIST_ENTRY Head,
_Inout_ PSINGLE_LIST_ENTRY NewEntry,
_In_ PKGUARDED_MUTEX Lock)
{
KeAcquireGuardedMutex(Lock);
PSINGLE_LIST_ENTRY old_entry = Head->Next;
Head->Next = NewEntry;
NewEntry->Next = old_entry;
KeReleaseGuardedMutex(Lock);
}
/*
* Assuming the SINGLE_LIST_ENTRY is the first item in the structure, we
* can pass a callback routine to be called before the free occurs. This
* allows us to dereference/free structure specific items whilst still allowing
* the list to remain flexible.
*/
_Acquires_lock_(_Lock_kind_mutex_)
_Releases_lock_(_Lock_kind_mutex_)
BOOLEAN
ListFreeFirstEntry(_Inout_ PSINGLE_LIST_ENTRY Head,
_In_ PKGUARDED_MUTEX Lock,
_In_opt_ PVOID CallbackRoutine)
{
BOOLEAN result = FALSE;
KeAcquireGuardedMutex(Lock);
if (Head->Next)
{
PSINGLE_LIST_ENTRY entry = Head->Next;
VOID (*callback_function_ptr)(PVOID) = CallbackRoutine;
(*callback_function_ptr)(entry);
Head->Next = Head->Next->Next;
ExFreePoolWithTag(entry, POOL_TAG_THREAD_LIST);
result = TRUE;
}
KeReleaseGuardedMutex(Lock);
return result;
}
/*
* If we are removing a specific entry, its assumed we have freed and/or dereferenced
* any fields in the structure.
*/
_Acquires_lock_(_Lock_kind_mutex_)
_Releases_lock_(_Lock_kind_mutex_)
VOID
ListRemoveEntry(_Inout_ PSINGLE_LIST_ENTRY Head,
_Inout_ PSINGLE_LIST_ENTRY Entry,
_In_ PKGUARDED_MUTEX Lock)
{
KeAcquireGuardedMutex(Lock);
PSINGLE_LIST_ENTRY entry = Head->Next;
if (!entry)
goto unlock;
if (entry == Entry)
{
Head->Next = entry->Next;
ExFreePoolWithTag(Entry, POOL_TAG_THREAD_LIST);
goto unlock;
}
while (entry->Next)
{
if (entry->Next == Entry)
{
entry->Next = Entry->Next;
ExFreePoolWithTag(Entry, POOL_TAG_THREAD_LIST);
goto unlock;
}
entry = entry->Next;
}
unlock:
KeReleaseGuardedMutex(Lock);
}