mirror-ac/driver/driver.c
lhodges1 244450c89b guh
2023-09-27 23:10:12 +10:00

742 lines
18 KiB
C

#include "driver.h"
#include "common.h"
#include "ioctl.h"
#include "callbacks.h"
#include "hv.h"
#include "pool.h"
#include "thread.h"
#include "modules.h"
#include "integrity.h"
/*
* This structure is strictly for driver related stuff
* that should only be written at driver entry.
*
* Note that the lock isnt really needed here but Im using one
* just in case c:
*/
#define MAXIMUM_APC_CONTEXTS 10
typedef struct _DRIVER_CONFIG
{
UNICODE_STRING unicode_driver_name;
ANSI_STRING ansi_driver_name;
UNICODE_STRING device_name;
UNICODE_STRING device_symbolic_link;
UNICODE_STRING driver_path;
UNICODE_STRING registry_path;
SYSTEM_INFORMATION system_information;
PVOID apc_contexts[ MAXIMUM_APC_CONTEXTS ];
KGUARDED_MUTEX lock;
}DRIVER_CONFIG, * PDRIVER_CONFIG;
/*
* This structure can change at anytime based on whether
* the target process to protect is open / closed / changes etc.
*/
typedef struct _PROCESS_CONFIG
{
BOOLEAN initialised;
LONG um_handle;
LONG km_handle;
PEPROCESS protected_process_eprocess;
KGUARDED_MUTEX lock;
}PROCESS_CONFIG, * PPROCESS_CONFIG;
DRIVER_CONFIG driver_config = { 0 };
PROCESS_CONFIG process_config = { 0 };
/*
* The driver config structure holds an array of pointers to APC context structures. These
* APC context structures are unique to each APC operation that this driver will perform. For
* example, a single context will manage all APCs that are used to stackwalk, whilst another
* context will be used to manage all APCs used to query a threads memory for example.
*
* Due to the nature of APCs, its important to keep a total or count of the number of APCs we
* have allocated and queued to threads. This information is stored in the APC_CONTEXT_HEADER which
* all APC context structures will contain as the first entry in their structure. It holds the ContextId
* which is a unique identifier for the type of APC operation it is managing aswell as the number of
* currently queued APCs.
*
* When an APC is allocated a queued, we increment this count. When an APC is completed and freed, we
* decrement this counter and free the APC itself. If all APCs have been freed and the counter is 0,the
* following objects will be freed:
*
* 1. Any additional allocations used by the APC stored in the context structure
* 2. The APC context structure for the given APC operation
* 3. The APC context entry in driver_config->apc_contexts will be zero'd.
*
* It's important to remember that the driver can unload when pending APC's have not been freed due to the
* limitations windows places on APCs, however I am in the process of finding a solution for this.
*/
STATIC
VOID
FreeAllApcContextStructures()
{
KeAcquireGuardedMutex( &driver_config.lock );
for ( INT index = 0; index < MAXIMUM_APC_CONTEXTS; index++ )
{
PUINT64 entry = driver_config.apc_contexts;
if ( entry[ index ] != NULL )
{
ExFreePoolWithTag( entry, POOL_TAG_APC );
}
}
unlock:
KeReleaseGuardedMutex( &driver_config.lock );
}
/*
* No need to hold the lock here as the thread freeing the APCs will
* already hold the configuration lock. We also dont want to release and
* reclaim the lock before calling this function since we need to ensure
* we hold the lock during the entire decrement and free process.
*/
STATIC
BOOLEAN
FreeApcContextStructure(
_Inout_ PAPC_CONTEXT_HEADER Context
)
{
BOOLEAN result = FALSE;
DEBUG_LOG( "All APCs executed, freeing context structure" );
for ( INT index = 0; index < MAXIMUM_APC_CONTEXTS; index++ )
{
PUINT64 entry = driver_config.apc_contexts;
if ( entry[ index ] == Context )
{
if ( Context->count != 0 )
goto unlock;
ExFreePoolWithTag( Context, POOL_TAG_APC );
entry[ index ] = NULL;
result = TRUE;
goto unlock;
}
}
unlock:
return result;
}
VOID
IncrementApcCount(
_In_ LONG ContextId
)
{
PAPC_CONTEXT_HEADER header = NULL;
GetApcContext( &header, ContextId );
if ( !header )
return;
KeAcquireGuardedMutex( &driver_config.lock );
header->count += 1;
KeReleaseGuardedMutex( &driver_config.lock );
}
VOID
FreeApcAndDecrementApcCount(
_In_ PRKAPC Apc,
_In_ LONG ContextId
)
{
PAPC_CONTEXT_HEADER context = NULL;
ExFreePoolWithTag( Apc, POOL_TAG_APC );
GetApcContext( &context, ContextId );
if ( !context )
goto end;
KeAcquireGuardedMutex( &driver_config.lock );
context->count -= 1;
end:
KeReleaseGuardedMutex( &driver_config.lock );
}
/*
* The reason we use a query model rather then checking the count of queued APCs
* after each APC free and decrement is that the lock will be recursively acquired by
* freeing threads (i.e executing APCs) rather then APC allocation threads. The reason for this
* being that freeing threads are executing at a higher IRQL then the APC allocation
* thread, hence they are granted higher priority by the scheduler when determining
* which thread will accquire the lock next:
*
* [+] Freeing thread -> ApcKernelRoutine IRQL: 1 (APC_LEVEL)
* [+] Allocation thread -> ValidateThreadViaKernelApcCallback IRQL: 0 (PASSIVE_LEVEL)
*
* As a result, once an APC is executed and reaches the freeing stage, it will acquire the
* lock and decrement it. Then, if atleast 1 APC execution thread is waiting on the lock,
* it will be prioritised due to its higher IRQL and the cycle will continue. Eventually,
* the count will reach 0 due to recursive acquisition by the executing APC threads and then
* the function will free the APC context structure. This will then cause a bug check the next
* time a thread accesses the context structure and hence not good :c.
*
* So to combat this, we add in a flag specifying whether or not an allocation of APCs is
* in progress, and even if the count is 0 we will not free the context structure until
* the count is 0 and allocation_in_progress is 0. We can then call this function alongside
* other query callbacks via IOCTL to constantly monitor the status of open APC contexts.
*/
NTSTATUS
QueryActiveApcContextsForCompletion()
{
for ( INT index = 0; index < MAXIMUM_APC_CONTEXTS; index++ )
{
PAPC_CONTEXT_HEADER entry = NULL;
GetApcContextByIndex( &entry, index );
/* acquire mutex after we get the context to prevent thread deadlock */
KeAcquireGuardedMutex( &driver_config.lock );
if ( entry == NULL )
{
KeReleaseGuardedMutex( &driver_config.lock );
continue;
}
DEBUG_LOG( "APC Context Id: %lx", entry->context_id );
DEBUG_LOG( "Active APC Count: %i", entry->count );
if ( entry->count > 0 || entry->allocation_in_progress == TRUE )
{
KeReleaseGuardedMutex( &driver_config.lock );
continue;
}
switch ( entry->context_id )
{
case APC_CONTEXT_ID_STACKWALK:
FreeApcStackwalkApcContextInformation( entry );
FreeApcContextStructure( entry );
break;
}
KeReleaseGuardedMutex( &driver_config.lock );
}
return STATUS_SUCCESS;
}
VOID
InsertApcContext(
_In_ PVOID Context
)
{
KeAcquireGuardedMutex( &driver_config.lock );
PAPC_CONTEXT_HEADER header = Context;
for ( INT index = 0; index < MAXIMUM_APC_CONTEXTS; index++ )
{
PUINT64 entry = driver_config.apc_contexts;
if ( entry[ index ] == NULL )
{
entry[ index ] = Context;
goto end;
}
}
end:
KeReleaseGuardedMutex( &driver_config.lock );
}
VOID
GetApcContext(
_Inout_ PVOID* Context,
_In_ LONG ContextIdentifier
)
{
KeAcquireGuardedMutex( &driver_config.lock );
for ( INT index = 0; index < MAXIMUM_APC_CONTEXTS; index++ )
{
PAPC_CONTEXT_HEADER header = driver_config.apc_contexts[ index ];
if ( header == NULL )
continue;
if ( header->context_id == ContextIdentifier )
{
*Context = header;
goto unlock;
}
}
unlock:
KeReleaseGuardedMutex( &driver_config.lock );
}
VOID
GetApcContextByIndex(
_Inout_ PVOID* Context,
_In_ INT Index
)
{
KeAcquireGuardedMutex( &driver_config.lock );
*Context = driver_config.apc_contexts[ Index ];
KeReleaseGuardedMutex( &driver_config.lock );
}
VOID
ReadProcessInitialisedConfigFlag(
_Out_ PBOOLEAN Flag
)
{
if ( Flag == NULL )
return;
KeAcquireGuardedMutex( &process_config.lock );
*Flag = process_config.initialised;
KeReleaseGuardedMutex( &process_config.lock );
}
VOID
GetProtectedProcessEProcess(
_Out_ PEPROCESS* Process
)
{
if ( Process == NULL )
return;
KeAcquireGuardedMutex( &process_config.lock );
*Process = process_config.protected_process_eprocess;
KeReleaseGuardedMutex( &process_config.lock );
}
VOID
GetProtectedProcessId(
_Out_ PLONG ProcessId
)
{
KeAcquireGuardedMutex( &process_config.lock );
RtlZeroMemory( ProcessId, sizeof( LONG ) );
*ProcessId = process_config.km_handle;
KeReleaseGuardedMutex( &process_config.lock );
}
VOID
ClearProcessConfigOnProcessTermination()
{
DEBUG_LOG( "Process closed, clearing driver process_configuration" );
KeAcquireGuardedMutex( &process_config.lock );
process_config.km_handle = NULL;
process_config.um_handle = NULL;
process_config.protected_process_eprocess = NULL;
process_config.initialised = FALSE;
KeReleaseGuardedMutex( &process_config.lock );
}
VOID
GetDriverName(
_Out_ LPCSTR* DriverName
)
{
if ( DriverName == NULL )
return;
KeAcquireGuardedMutex( &driver_config.lock );
*DriverName = driver_config.ansi_driver_name.Buffer;
KeReleaseGuardedMutex( &driver_config.lock );
}
VOID
GetDriverPath(
_Out_ PUNICODE_STRING DriverPath
)
{
KeAcquireGuardedMutex( &driver_config.lock );
RtlZeroMemory( DriverPath, sizeof( UNICODE_STRING ) );
RtlInitUnicodeString( DriverPath, driver_config.driver_path.Buffer );
KeReleaseGuardedMutex( &driver_config.lock );
}
VOID
GetDriverRegistryPath(
_Out_ PUNICODE_STRING RegistryPath
)
{
KeAcquireGuardedMutex( &driver_config.lock );
RtlZeroMemory( RegistryPath, sizeof( UNICODE_STRING ) );
RtlCopyUnicodeString( RegistryPath, &driver_config.registry_path );
KeReleaseGuardedMutex( &driver_config.lock );
}
VOID
GetDriverDeviceName(
_Out_ PUNICODE_STRING DeviceName
)
{
KeAcquireGuardedMutex( &driver_config.lock );
RtlZeroMemory( DeviceName, sizeof( UNICODE_STRING ) );
RtlCopyUnicodeString( DeviceName, &driver_config.device_name );
KeReleaseGuardedMutex( &driver_config.lock );
}
VOID
GetDriverSymbolicLink(
_Out_ PUNICODE_STRING DeviceSymbolicLink
)
{
KeAcquireGuardedMutex( &driver_config.lock );
RtlZeroMemory( DeviceSymbolicLink, sizeof( UNICODE_STRING ) );
RtlCopyUnicodeString( DeviceSymbolicLink, &driver_config.device_symbolic_link );
KeReleaseGuardedMutex( &driver_config.lock );
}
VOID
GetDriverConfigSystemInformation(
_Out_ PSYSTEM_INFORMATION* SystemInformation
)
{
if ( SystemInformation == NULL )
return;
KeAcquireGuardedMutex( &driver_config.lock );
*SystemInformation = &driver_config.system_information;
KeReleaseGuardedMutex( &driver_config.lock );
}
STATIC
NTSTATUS
RegistryPathQueryCallbackRoutine(
IN PWSTR ValueName,
IN ULONG ValueType,
IN PVOID ValueData,
IN ULONG ValueLength,
IN PVOID Context,
IN PVOID EntryContext
)
{
UNICODE_STRING value_name;
UNICODE_STRING image_path = RTL_CONSTANT_STRING( L"ImagePath" );
UNICODE_STRING display_name = RTL_CONSTANT_STRING( L"DisplayName" );
UNICODE_STRING value;
PVOID temp_buffer;
RtlInitUnicodeString( &value_name, ValueName );
if ( RtlCompareUnicodeString(&value_name, &image_path, FALSE) == FALSE )
{
temp_buffer = ExAllocatePool2( POOL_FLAG_NON_PAGED, ValueLength, POOL_TAG_STRINGS );
if ( !temp_buffer )
return STATUS_MEMORY_NOT_ALLOCATED;
RtlCopyMemory(
temp_buffer,
ValueData,
ValueLength
);
driver_config.driver_path.Buffer = (PWCH)temp_buffer;
driver_config.driver_path.Length = ValueLength;
driver_config.driver_path.MaximumLength = ValueLength + 1;
}
if ( RtlCompareUnicodeString( &value_name, &display_name, FALSE ) == FALSE )
{
temp_buffer = ExAllocatePool2( POOL_FLAG_NON_PAGED, ValueLength, POOL_TAG_STRINGS );
if ( !temp_buffer )
return STATUS_MEMORY_NOT_ALLOCATED;
RtlCopyMemory(
temp_buffer,
ValueData,
ValueLength
);
driver_config.unicode_driver_name.Buffer = ( PWCH )temp_buffer;
driver_config.unicode_driver_name.Length = ValueLength;
driver_config.unicode_driver_name.MaximumLength = ValueLength + 1;
}
return STATUS_SUCCESS;
}
STATIC
VOID
FreeDriverConfigurationStringBuffers()
{
if ( driver_config.unicode_driver_name.Buffer )
ExFreePoolWithTag( driver_config.unicode_driver_name.Buffer, POOL_TAG_STRINGS );
if ( driver_config.driver_path.Buffer )
ExFreePoolWithTag( driver_config.driver_path.Buffer, POOL_TAG_STRINGS );
if (driver_config.ansi_driver_name.Buffer )
RtlFreeAnsiString( &driver_config.ansi_driver_name );
}
STATIC
NTSTATUS
InitialiseDriverConfigOnDriverEntry(
_In_ PUNICODE_STRING RegistryPath
)
{
NTSTATUS status;
/* 3rd page acts as a null terminator for the callback routine */
RTL_QUERY_REGISTRY_TABLE query_table[ 3 ] = { 0 };
KeInitializeGuardedMutex( &driver_config.lock );
RtlInitUnicodeString( &driver_config.device_name, L"\\Device\\DonnaAC" );
RtlInitUnicodeString( &driver_config.device_symbolic_link, L"\\??\\DonnaAC" );
RtlCopyUnicodeString( &driver_config.registry_path, RegistryPath );
query_table[ 0 ].Flags = RTL_QUERY_REGISTRY_NOEXPAND;
query_table[ 0 ].Name = L"ImagePath";
query_table[ 0 ].DefaultType = REG_MULTI_SZ;
query_table[ 0 ].DefaultLength = 0;
query_table[ 0 ].DefaultData = NULL;
query_table[ 0 ].EntryContext = NULL;
query_table[ 0 ].QueryRoutine = RegistryPathQueryCallbackRoutine;
query_table[ 1 ].Flags = RTL_QUERY_REGISTRY_NOEXPAND;
query_table[ 1 ].Name = L"DisplayName";
query_table[ 1 ].DefaultType = REG_SZ;
query_table[ 1 ].DefaultLength = 0;
query_table[ 1 ].DefaultData = NULL;
query_table[ 1 ].EntryContext = NULL;
query_table[ 1 ].QueryRoutine = RegistryPathQueryCallbackRoutine;
status = RtlxQueryRegistryValues(
RTL_REGISTRY_ABSOLUTE,
RegistryPath->Buffer,
&query_table,
NULL,
NULL
);
if ( !NT_SUCCESS( status ) )
{
DEBUG_ERROR( "RtlxQueryRegistryValues failed with status %x", status );
FreeDriverConfigurationStringBuffers();
return status;
}
status = RtlUnicodeStringToAnsiString(
&driver_config.ansi_driver_name,
&driver_config.unicode_driver_name,
TRUE
);
if ( !NT_SUCCESS( status ) )
{
DEBUG_ERROR( "Failed to convert unicode string to ansi string" );
FreeDriverConfigurationStringBuffers();
return status;
}
status = ParseSMBIOSTable(
&driver_config.system_information.motherboard_serial,
sizeof(driver_config.system_information.motherboard_serial)
);
if ( !NT_SUCCESS( status ) )
{
DEBUG_ERROR( "ParseSMBIOSTable failed with status %x", status );
FreeDriverConfigurationStringBuffers();
return status;
}
status = GetHardDiskDriveSerialNumber(
&driver_config.system_information.drive_0_serial,
sizeof( driver_config.system_information.drive_0_serial )
);
if ( !NT_SUCCESS( status ) )
{
DEBUG_ERROR( "GetHardDiskDriverSerialNumber failed with status %x", status );
FreeDriverConfigurationStringBuffers();
return status;
}
DEBUG_LOG( "Motherboard serial: %s", driver_config.system_information.motherboard_serial );
DEBUG_LOG( "Drive 0 serial: %s", driver_config.system_information.drive_0_serial );
return status;
}
NTSTATUS
InitialiseProcessConfigOnProcessLaunch(
_In_ PIRP Irp
)
{
NTSTATUS status;
PDRIVER_INITIATION_INFORMATION information;
PEPROCESS eprocess;
information = ( PDRIVER_INITIATION_INFORMATION )Irp->AssociatedIrp.SystemBuffer;
status = PsLookupProcessByProcessId( information->protected_process_id, &eprocess );
if ( !NT_SUCCESS( status ) )
return status;
/*
* acquire the mutex here to prevent a race condition if an unknown party trys
* to fuzz our IOCTL codes whilst the target process launches.
*/
KeAcquireGuardedMutex( &process_config.lock );
process_config.protected_process_eprocess = eprocess;
process_config.um_handle = information->protected_process_id;
process_config.km_handle = PsGetProcessId( eprocess );
process_config.initialised = TRUE;
KeReleaseGuardedMutex( &process_config.lock );
return status;
}
STATIC
VOID
InitialiseProcessConfigOnDriverEntry()
{
KeInitializeGuardedMutex( &process_config.lock );
}
STATIC
VOID
CleanupDriverConfigOnUnload()
{
FreeDriverConfigurationStringBuffers();
FreeGlobalReportQueueObjects();
IoDeleteSymbolicLink( &driver_config.device_symbolic_link );
}
STATIC
VOID
DriverUnload(
_In_ PDRIVER_OBJECT DriverObject
)
{
//PsSetCreateProcessNotifyRoutine( ProcessCreateNotifyRoutine, TRUE );
//QueryActiveApcContextsForCompletion();
//FreeAllApcContextStructures();
CleanupDriverConfigOnUnload();
IoDeleteDevice( DriverObject->DeviceObject );
}
VOID
TerminateProtectedProcessOnViolation()
{
NTSTATUS status;
ULONG process_id;
GetProtectedProcessId( &process_id );
if ( !process_id )
{
DEBUG_ERROR( "Failed to terminate process as process id is null" );
return;
}
/*
* Make sure we pass a km handle to ZwTerminateProcess and NOT a usermode handle.
*/
status = ZwTerminateProcess( process_id, STATUS_SYSTEM_INTEGRITY_POLICY_VIOLATION );
if ( !NT_SUCCESS( status ) )
{
/*
* We don't want to clear the process config if ZwTerminateProcess fails
* so we can try again.
*/
DEBUG_ERROR( "ZwTerminateProcess failed with status %x", status );
return;
}
ClearProcessConfigOnProcessTermination();
}
NTSTATUS
DriverEntry(
_In_ PDRIVER_OBJECT DriverObject,
_In_ PUNICODE_STRING RegistryPath
)
{
BOOLEAN flag = FALSE;
NTSTATUS status;
status = InitialiseDriverConfigOnDriverEntry( RegistryPath );
if ( !NT_SUCCESS( status ) )
{
DEBUG_ERROR( "InitialiseDriverConfigOnDriverEntry failed with status %x", status );
return status;
}
InitialiseProcessConfigOnDriverEntry();
status = IoCreateDevice(
DriverObject,
NULL,
&driver_config.device_name,
FILE_DEVICE_UNKNOWN,
FILE_DEVICE_SECURE_OPEN,
FALSE,
&DriverObject->DeviceObject
);
if ( !NT_SUCCESS( status ) )
{
DEBUG_ERROR( "IoCreateDevice failed with status %x", status );
FreeDriverConfigurationStringBuffers();
return STATUS_FAILED_DRIVER_ENTRY;
}
status = IoCreateSymbolicLink(
&driver_config.device_symbolic_link,
&driver_config.device_name
);
if ( !NT_SUCCESS( status ) )
{
DEBUG_ERROR( "failed to create symbolic link" );
FreeDriverConfigurationStringBuffers();
IoDeleteDevice( DriverObject->DeviceObject );
return STATUS_FAILED_DRIVER_ENTRY;
}
DriverObject->MajorFunction[ IRP_MJ_CREATE ] = DeviceCreate;
DriverObject->MajorFunction[ IRP_MJ_CLOSE ] = DeviceClose;
DriverObject->MajorFunction[ IRP_MJ_DEVICE_CONTROL ] = DeviceControl;
DriverObject->DriverUnload = DriverUnload;
InitialiseGlobalReportQueue(&flag);
if ( !flag )
{
DEBUG_ERROR( "failed to init report queue" );
FreeDriverConfigurationStringBuffers();
IoDeleteSymbolicLink( &driver_config.device_symbolic_link );
IoDeleteDevice( DriverObject->DeviceObject );
return STATUS_FAILED_DRIVER_ENTRY;
}
ValidateThreadsViaKernelApc();
DEBUG_LOG( "DonnaAC Driver Entry Complete" );
return STATUS_SUCCESS;
}