mirror-ac/driver/driver.c
2023-10-06 22:08:30 +11:00

938 lines
25 KiB
C

#include "driver.h"
#include "common.h"
#include "ioctl.h"
#include "callbacks.h"
#include "hv.h"
#include "pool.h"
#include "thread.h"
#include "modules.h"
#include "integrity.h"
STATIC NTSTATUS AllocateCallbackStructure();
STATIC VOID CleanupDriverCallbacksOnDriverUnload();
STATIC NTSTATUS RegistryPathQueryCallbackRoutine(IN PWSTR ValueName, IN ULONG ValueType, IN PVOID ValueData,
IN ULONG ValueLength, IN PVOID Context, IN PVOID EntryContext);
STATIC VOID FreeDriverConfigurationStringBuffers();
STATIC BOOLEAN FreeAllApcContextStructures();
STATIC VOID DriverUnload(_In_ PDRIVER_OBJECT DriverObject);
STATIC VOID InitialiseProcessConfigOnDriverEntry();
STATIC VOID CleanupDriverConfigOnUnload();
STATIC NTSTATUS InitialiseDriverConfigOnDriverEntry(_In_ PUNICODE_STRING RegistryPath);
NTSTATUS DriverEntry(_In_ PDRIVER_OBJECT DriverObject, _In_ PUNICODE_STRING RegistryPath);
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT, DriverEntry)
#pragma alloc_text(PAGE, EnableCallbackRoutinesOnProcessRun)
#pragma alloc_text(PAGE, AllocateCallbackStructure)
#pragma alloc_text(PAGE, UnregisterCallbacksOnProcessTermination)
#pragma alloc_text(PAGE, CleanupDriverCallbacksOnDriverUnload)
#pragma alloc_text(PAGE, GetCallbackConfigStructure)
#pragma alloc_text(PAGE, InsertApcContext)
#pragma alloc_text(PAGE, GetApcContext)
#pragma alloc_text(PAGE, GetApcContextByIndex)
#pragma alloc_text(PAGE, ReadProcessInitialisedConfigFlag)
#pragma alloc_text(PAGE, GetProtectedProcessEProcess)
#pragma alloc_text(PAGE, GetProtectedProcessId)
#pragma alloc_text(PAGE, ClearProcessConfigOnProcessTermination)
#pragma alloc_text(PAGE, GetDriverName)
#pragma alloc_text(PAGE, GetDriverPath)
#pragma alloc_text(PAGE, GetDriverRegistryPath)
#pragma alloc_text(PAGE, GetDriverDeviceName)
#pragma alloc_text(PAGE, GetDriverSymbolicLink)
#pragma alloc_text(PAGE, GetDriverConfigSystemInformation)
#pragma alloc_text(PAGE, RegistryPathQueryCallbackRoutine)
#pragma alloc_text(PAGE, FreeDriverConfigurationStringBuffers)
#pragma alloc_text(PAGE, InitialiseDriverConfigOnDriverEntry)
#pragma alloc_text(PAGE, InitialiseProcessConfigOnProcessLaunch)
#pragma alloc_text(PAGE, InitialiseProcessConfigOnDriverEntry)
#pragma alloc_text(PAGE, CleanupDriverConfigOnUnload)
#pragma alloc_text(PAGE, DriverUnload)
#pragma alloc_text(PAGE, TerminateProtectedProcessOnViolation)
#endif
/*
* This structure is strictly for driver related stuff
* that should only be written at driver entry.
*/
#define MAXIMUM_APC_CONTEXTS 10
typedef struct _DRIVER_CONFIG
{
UNICODE_STRING unicode_driver_name;
ANSI_STRING ansi_driver_name;
UNICODE_STRING device_name;
UNICODE_STRING device_symbolic_link;
UNICODE_STRING driver_path;
UNICODE_STRING registry_path;
SYSTEM_INFORMATION system_information;
PVOID apc_contexts[MAXIMUM_APC_CONTEXTS];
PCALLBACK_CONFIGURATION callback_config;
KGUARDED_MUTEX lock;
}DRIVER_CONFIG, * PDRIVER_CONFIG;
/*
* This structure can change at anytime based on whether
* the target process to protect is open / closed / changes etc.
*/
typedef struct _PROCESS_CONFIG
{
BOOLEAN initialised;
LONG um_handle;
LONG km_handle;
PEPROCESS protected_process_eprocess;
KGUARDED_MUTEX lock;
}PROCESS_CONFIG, * PPROCESS_CONFIG;
DRIVER_CONFIG driver_config = { 0 };
PROCESS_CONFIG process_config = { 0 };
#define POOL_TAG_CONFIG 'conf'
/*
* The CALLBACKS_CONFIGURATION structure was being paged out, aswell as enabling a race condition
* to occur by being encapsulated in the callbacks.c file, so to solve both these problems I have moved
* them here. This way, we can make use of both locks (which is very ugly and I am pretty sure means
* I have made a mistake implementation wise but alas) ensuring we get rid of any race conditions
* aswell as the sturcture being paged out as we allocate in a non-paged pool meaning theres no
* chance our mutex will cause an IRQL bug check due to being paged out during acquisition.
*/
NTSTATUS
EnableCallbackRoutinesOnProcessRun()
{
NTSTATUS status;
KeAcquireGuardedMutex(&driver_config.lock);
KeAcquireGuardedMutex(&driver_config.callback_config->mutex);
OB_CALLBACK_REGISTRATION callback_registration = { 0 };
OB_OPERATION_REGISTRATION operation_registration = { 0 };
operation_registration.ObjectType = PsProcessType;
operation_registration.Operations = OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE;
operation_registration.PreOperation = ObPreOpCallbackRoutine;
operation_registration.PostOperation = ObPostOpCallbackRoutine;
callback_registration.Version = OB_FLT_REGISTRATION_VERSION;
callback_registration.OperationRegistration = &operation_registration;
callback_registration.OperationRegistrationCount = 1;
callback_registration.RegistrationContext = NULL;
status = ObRegisterCallbacks(
&callback_registration,
&driver_config.callback_config->registration_handle
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("failed to launch obregisters with status %x", status);
goto end;
}
//status = PsSetCreateProcessNotifyRoutine(
// ProcessCreateNotifyRoutine,
// FALSE
//);
//if ( !NT_SUCCESS( status ) )
// DEBUG_ERROR( "Failed to launch ps create notif routines with status %x", status );
end:
KeReleaseGuardedMutex(&driver_config.callback_config->mutex);
KeReleaseGuardedMutex(&driver_config.lock);
return status;
}
STATIC
NTSTATUS
AllocateCallbackStructure()
{
KeAcquireGuardedMutex(&driver_config.lock);
driver_config.callback_config =
ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(CALLBACK_CONFIGURATION), POOL_TAG_CONFIG);
if (!driver_config.callback_config)
{
KeReleaseGuardedMutex(&driver_config.lock);
return STATUS_MEMORY_NOT_ALLOCATED;
}
/*
* This mutex ensures we don't unregister our ObRegisterCallbacks while
* the callback function is running since this might cause some funny stuff
* to happen. Better to be safe then sorry :)
*/
KeInitializeGuardedMutex(&driver_config.callback_config->mutex);
KeReleaseGuardedMutex(&driver_config.lock);
return STATUS_SUCCESS;
}
VOID
UnregisterCallbacksOnProcessTermination()
{
KeAcquireGuardedMutex(&driver_config.lock);
KeAcquireGuardedMutex(&driver_config.callback_config->mutex);
if (driver_config.callback_config->registration_handle)
{
ObUnRegisterCallbacks(driver_config.callback_config->registration_handle);
driver_config.callback_config->registration_handle = NULL;
}
KeReleaseGuardedMutex(&driver_config.callback_config->mutex);
KeReleaseGuardedMutex(&driver_config.lock);
}
/*
* The question is, What happens if we attempt to register our callbacks after we
* unregister them but before we free the pool? Hm.. No Good.
*
* Okay to solve this well acquire the driver lock aswell, we could also just
* store the structure in the .data section but i ceebs atm.
*
* This definitely doesn't seem optimal, but it works ...
*/
STATIC
VOID
CleanupDriverCallbacksOnDriverUnload()
{
/* UnRegisterCallbacksOnProcessTermination acquires the driver lock, so must acquire it after */
UnregisterCallbacksOnProcessTermination();
KeAcquireGuardedMutex(&driver_config.lock);
ExFreePoolWithTag(driver_config.callback_config, POOL_TAG_CONFIG);
KeReleaseGuardedMutex(&driver_config.lock);
}
/*
* Can return a null value if we attempt to read the value is underway whilst we are
* freeing the structure, hence the use of the 2 locks.
*/
VOID
GetCallbackConfigStructure(
_Out_ PCALLBACK_CONFIGURATION* CallbackConfiguration
)
{
if (!CallbackConfiguration)
return;
*CallbackConfiguration = NULL;
InterlockedExchangePointer(CallbackConfiguration, driver_config.callback_config);
}
/*
* The driver config structure holds an array of pointers to APC context structures. These
* APC context structures are unique to each APC operation that this driver will perform. For
* example, a single context will manage all APCs that are used to stackwalk, whilst another
* context will be used to manage all APCs used to query a threads memory for example.
*
* Due to the nature of APCs, its important to keep a total or count of the number of APCs we
* have allocated and queued to threads. This information is stored in the APC_CONTEXT_HEADER which
* all APC context structures will contain as the first entry in their structure. It holds the ContextId
* which is a unique identifier for the type of APC operation it is managing aswell as the number of
* currently queued APCs.
*
* When an APC is allocated a queued, we increment this count. When an APC is completed and freed, we
* decrement this counter and free the APC itself. If all APCs have been freed and the counter is 0,the
* following objects will be freed:
*
* 1. Any additional allocations used by the APC stored in the context structure
* 2. The APC context structure for the given APC operation
* 3. The APC context entry in driver_config->apc_contexts will be zero'd.
*
* It's important to remember that the driver can unload when pending APC's have not been freed due to the
* limitations windows places on APCs, however I am in the process of finding a solution for this.
*/
STATIC
BOOLEAN
FreeAllApcContextStructures()
{
BOOLEAN flag = TRUE;
KeAcquireGuardedMutex(&driver_config.lock);
for (INT index = 0; index < MAXIMUM_APC_CONTEXTS; index++)
{
PUINT64 entry = driver_config.apc_contexts;
if (entry[index] != NULL)
{
PAPC_CONTEXT_HEADER context = entry[index];
if (context->count > 0)
{
flag = FALSE;
goto unlock;
}
ExFreePoolWithTag(entry, POOL_TAG_APC);
}
}
unlock:
KeReleaseGuardedMutex(&driver_config.lock);
return flag;
}
/*
* No need to hold the lock here as the thread freeing the APCs will
* already hold the configuration lock. We also dont want to release and
* reclaim the lock before calling this function since we need to ensure
* we hold the lock during the entire decrement and free process.
*/
STATIC
BOOLEAN
FreeApcContextStructure(
_Inout_ PAPC_CONTEXT_HEADER Context
)
{
BOOLEAN result = FALSE;
DEBUG_LOG("All APCs executed, freeing context structure");
for (INT index = 0; index < MAXIMUM_APC_CONTEXTS; index++)
{
PUINT64 entry = driver_config.apc_contexts;
if (entry[index] == Context)
{
if (Context->count != 0)
goto unlock;
ExFreePoolWithTag(Context, POOL_TAG_APC);
entry[index] = NULL;
result = TRUE;
goto unlock;
}
}
unlock:
return result;
}
VOID
IncrementApcCount(
_In_ LONG ContextId
)
{
PAPC_CONTEXT_HEADER header = NULL;
GetApcContext(&header, ContextId);
if (!header)
return;
KeAcquireGuardedMutex(&driver_config.lock);
header->count += 1;
KeReleaseGuardedMutex(&driver_config.lock);
}
VOID
FreeApcAndDecrementApcCount(
_In_ PRKAPC Apc,
_In_ LONG ContextId
)
{
PAPC_CONTEXT_HEADER context = NULL;
ExFreePoolWithTag(Apc, POOL_TAG_APC);
GetApcContext(&context, ContextId);
if (!context)
goto end;
KeAcquireGuardedMutex(&driver_config.lock);
context->count -= 1;
end:
KeReleaseGuardedMutex(&driver_config.lock);
}
/*
* The reason we use a query model rather then checking the count of queued APCs
* after each APC free and decrement is that the lock will be recursively acquired by
* freeing threads (i.e executing APCs) rather then APC allocation threads. The reason for this
* being that freeing threads are executing at a higher IRQL then the APC allocation
* thread, hence they are granted higher priority by the scheduler when determining
* which thread will accquire the lock next:
*
* [+] Freeing thread -> ApcKernelRoutine IRQL: 1 (APC_LEVEL)
* [+] Allocation thread -> ValidateThreadViaKernelApcCallback IRQL: 0 (PASSIVE_LEVEL)
*
* As a result, once an APC is executed and reaches the freeing stage, it will acquire the
* lock and decrement it. Then, if atleast 1 APC execution thread is waiting on the lock,
* it will be prioritised due to its higher IRQL and the cycle will continue. Eventually,
* the count will reach 0 due to recursive acquisition by the executing APC threads and then
* the function will free the APC context structure. This will then cause a bug check the next
* time a thread accesses the context structure and hence not good :c.
*
* So to combat this, we add in a flag specifying whether or not an allocation of APCs is
* in progress, and even if the count is 0 we will not free the context structure until
* the count is 0 and allocation_in_progress is 0. We can then call this function alongside
* other query callbacks via IOCTL to constantly monitor the status of open APC contexts.
*/
NTSTATUS
QueryActiveApcContextsForCompletion()
{
for (INT index = 0; index < MAXIMUM_APC_CONTEXTS; index++)
{
PAPC_CONTEXT_HEADER entry = NULL;
GetApcContextByIndex(&entry, index);
/* acquire mutex after we get the context to prevent thread deadlock */
KeAcquireGuardedMutex(&driver_config.lock);
if (entry == NULL)
{
KeReleaseGuardedMutex(&driver_config.lock);
continue;
}
DEBUG_LOG("APC Context Id: %lx", entry->context_id);
DEBUG_LOG("Active APC Count: %i", entry->count);
if (entry->count > 0 || entry->allocation_in_progress == TRUE)
{
KeReleaseGuardedMutex(&driver_config.lock);
continue;
}
switch (entry->context_id)
{
case APC_CONTEXT_ID_STACKWALK:
FreeApcStackwalkApcContextInformation(entry);
FreeApcContextStructure(entry);
break;
}
KeReleaseGuardedMutex(&driver_config.lock);
}
return STATUS_SUCCESS;
}
VOID
InsertApcContext(
_In_ PVOID Context
)
{
KeAcquireGuardedMutex(&driver_config.lock);
PAPC_CONTEXT_HEADER header = Context;
for (INT index = 0; index < MAXIMUM_APC_CONTEXTS; index++)
{
PUINT64 entry = driver_config.apc_contexts;
if (entry[index] == NULL)
{
entry[index] = Context;
goto end;
}
}
end:
KeReleaseGuardedMutex(&driver_config.lock);
}
VOID
GetApcContext(
_Inout_ PVOID* Context,
_In_ LONG ContextIdentifier
)
{
KeAcquireGuardedMutex(&driver_config.lock);
for (INT index = 0; index < MAXIMUM_APC_CONTEXTS; index++)
{
PAPC_CONTEXT_HEADER header = driver_config.apc_contexts[index];
if (header == NULL)
continue;
if (header->context_id == ContextIdentifier)
{
*Context = header;
goto unlock;
}
}
unlock:
KeReleaseGuardedMutex(&driver_config.lock);
}
VOID
GetApcContextByIndex(
_Inout_ PVOID* Context,
_In_ INT Index
)
{
if (!Context)
return;
*Context = NULL;
InterlockedExchangePointer(Context, driver_config.apc_contexts[Index]);
}
VOID
ReadProcessInitialisedConfigFlag(
_Out_ PBOOLEAN Flag
)
{
if (Flag == NULL)
return;
KeAcquireGuardedMutex(&process_config.lock);
*Flag = process_config.initialised;
KeReleaseGuardedMutex(&process_config.lock);
}
VOID
GetProtectedProcessEProcess(
_Out_ PEPROCESS* Process
)
{
if (Process == NULL)
return;
*Process = NULL;
InterlockedExchangePointer(Process, process_config.protected_process_eprocess);
}
VOID
GetProtectedProcessId(
_Out_ PLONG ProcessId
)
{
KeAcquireGuardedMutex(&process_config.lock);
RtlZeroMemory(ProcessId, sizeof(LONG));
*ProcessId = process_config.km_handle;
KeReleaseGuardedMutex(&process_config.lock);
}
VOID
ClearProcessConfigOnProcessTermination()
{
DEBUG_LOG("Process closed, clearing driver process_configuration");
KeAcquireGuardedMutex(&process_config.lock);
process_config.km_handle = NULL;
process_config.um_handle = NULL;
process_config.protected_process_eprocess = NULL;
process_config.initialised = FALSE;
KeReleaseGuardedMutex(&process_config.lock);
}
VOID
GetDriverName(
_Out_ LPCSTR* DriverName
)
{
if (DriverName == NULL)
return;
*DriverName = NULL;
InterlockedExchangePointer(DriverName, driver_config.ansi_driver_name.Buffer);
}
VOID
GetDriverPath(
_Out_ PUNICODE_STRING DriverPath
)
{
KeAcquireGuardedMutex(&driver_config.lock);
RtlZeroMemory(DriverPath, sizeof(UNICODE_STRING));
RtlInitUnicodeString(DriverPath, driver_config.driver_path.Buffer);
KeReleaseGuardedMutex(&driver_config.lock);
}
VOID
GetDriverRegistryPath(
_Out_ PUNICODE_STRING RegistryPath
)
{
KeAcquireGuardedMutex(&driver_config.lock);
RtlZeroMemory(RegistryPath, sizeof(UNICODE_STRING));
RtlCopyUnicodeString(RegistryPath, &driver_config.registry_path);
KeReleaseGuardedMutex(&driver_config.lock);
}
VOID
GetDriverDeviceName(
_Out_ PUNICODE_STRING DeviceName
)
{
KeAcquireGuardedMutex(&driver_config.lock);
RtlZeroMemory(DeviceName, sizeof(UNICODE_STRING));
RtlCopyUnicodeString(DeviceName, &driver_config.device_name);
KeReleaseGuardedMutex(&driver_config.lock);
}
VOID
GetDriverSymbolicLink(
_Out_ PUNICODE_STRING DeviceSymbolicLink
)
{
KeAcquireGuardedMutex(&driver_config.lock);
RtlZeroMemory(DeviceSymbolicLink, sizeof(UNICODE_STRING));
RtlCopyUnicodeString(DeviceSymbolicLink, &driver_config.device_symbolic_link);
KeReleaseGuardedMutex(&driver_config.lock);
}
VOID
GetDriverConfigSystemInformation(
_Out_ PSYSTEM_INFORMATION* SystemInformation
)
{
if (SystemInformation == NULL)
return;
*SystemInformation = NULL;
InterlockedExchangePointer(SystemInformation, &driver_config.system_information);
}
STATIC
NTSTATUS
RegistryPathQueryCallbackRoutine(
IN PWSTR ValueName,
IN ULONG ValueType,
IN PVOID ValueData,
IN ULONG ValueLength,
IN PVOID Context,
IN PVOID EntryContext
)
{
UNICODE_STRING value_name;
UNICODE_STRING image_path = RTL_CONSTANT_STRING(L"ImagePath");
UNICODE_STRING display_name = RTL_CONSTANT_STRING(L"DisplayName");
UNICODE_STRING value;
PVOID temp_buffer;
RtlInitUnicodeString(&value_name, ValueName);
if (RtlCompareUnicodeString(&value_name, &image_path, FALSE) == FALSE)
{
temp_buffer = ExAllocatePool2(POOL_FLAG_NON_PAGED, ValueLength, POOL_TAG_STRINGS);
if (!temp_buffer)
return STATUS_MEMORY_NOT_ALLOCATED;
RtlCopyMemory(
temp_buffer,
ValueData,
ValueLength
);
driver_config.driver_path.Buffer = (PWCH)temp_buffer;
driver_config.driver_path.Length = ValueLength;
driver_config.driver_path.MaximumLength = ValueLength + 1;
}
if (RtlCompareUnicodeString(&value_name, &display_name, FALSE) == FALSE)
{
temp_buffer = ExAllocatePool2(POOL_FLAG_NON_PAGED, ValueLength, POOL_TAG_STRINGS);
if (!temp_buffer)
return STATUS_MEMORY_NOT_ALLOCATED;
RtlCopyMemory(
temp_buffer,
ValueData,
ValueLength
);
driver_config.unicode_driver_name.Buffer = (PWCH)temp_buffer;
driver_config.unicode_driver_name.Length = ValueLength;
driver_config.unicode_driver_name.MaximumLength = ValueLength + 1;
}
return STATUS_SUCCESS;
}
STATIC
VOID
FreeDriverConfigurationStringBuffers()
{
if (driver_config.unicode_driver_name.Buffer)
ExFreePoolWithTag(driver_config.unicode_driver_name.Buffer, POOL_TAG_STRINGS);
if (driver_config.driver_path.Buffer)
ExFreePoolWithTag(driver_config.driver_path.Buffer, POOL_TAG_STRINGS);
if (driver_config.ansi_driver_name.Buffer)
RtlFreeAnsiString(&driver_config.ansi_driver_name);
}
STATIC
NTSTATUS
InitialiseDriverConfigOnDriverEntry(
_In_ PUNICODE_STRING RegistryPath
)
{
NTSTATUS status;
/* 3rd page acts as a null terminator for the callback routine */
RTL_QUERY_REGISTRY_TABLE query_table[3] = { 0 };
KeInitializeGuardedMutex(&driver_config.lock);
RtlInitUnicodeString(&driver_config.device_name, L"\\Device\\DonnaAC");
RtlInitUnicodeString(&driver_config.device_symbolic_link, L"\\??\\DonnaAC");
RtlCopyUnicodeString(&driver_config.registry_path, RegistryPath);
query_table[0].Flags = RTL_QUERY_REGISTRY_NOEXPAND;
query_table[0].Name = L"ImagePath";
query_table[0].DefaultType = REG_MULTI_SZ;
query_table[0].DefaultLength = 0;
query_table[0].DefaultData = NULL;
query_table[0].EntryContext = NULL;
query_table[0].QueryRoutine = RegistryPathQueryCallbackRoutine;
query_table[1].Flags = RTL_QUERY_REGISTRY_NOEXPAND;
query_table[1].Name = L"DisplayName";
query_table[1].DefaultType = REG_SZ;
query_table[1].DefaultLength = 0;
query_table[1].DefaultData = NULL;
query_table[1].EntryContext = NULL;
query_table[1].QueryRoutine = RegistryPathQueryCallbackRoutine;
status = RtlxQueryRegistryValues(
RTL_REGISTRY_ABSOLUTE,
RegistryPath->Buffer,
&query_table,
NULL,
NULL
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("RtlxQueryRegistryValues failed with status %x", status);
FreeDriverConfigurationStringBuffers();
return status;
}
status = RtlUnicodeStringToAnsiString(
&driver_config.ansi_driver_name,
&driver_config.unicode_driver_name,
TRUE
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("Failed to convert unicode string to ansi string");
FreeDriverConfigurationStringBuffers();
return status;
}
status = ParseSMBIOSTable(
&driver_config.system_information.motherboard_serial,
sizeof(driver_config.system_information.motherboard_serial)
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("ParseSMBIOSTable failed with status %x", status);
FreeDriverConfigurationStringBuffers();
return status;
}
status = GetHardDiskDriveSerialNumber(
&driver_config.system_information.drive_0_serial,
sizeof(driver_config.system_information.drive_0_serial)
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("GetHardDiskDriverSerialNumber failed with status %x", status);
FreeDriverConfigurationStringBuffers();
return status;
}
status = AllocateCallbackStructure();
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("AllocateCallbackStructure failed with status %x", status);
FreeDriverConfigurationStringBuffers();
return status;
}
DEBUG_LOG("Motherboard serial: %s", driver_config.system_information.motherboard_serial);
DEBUG_LOG("Drive 0 serial: %s", driver_config.system_information.drive_0_serial);
return status;
}
NTSTATUS
InitialiseProcessConfigOnProcessLaunch(
_In_ PIRP Irp
)
{
NTSTATUS status;
PEPROCESS eprocess;
PDRIVER_INITIATION_INFORMATION information;
information = (PDRIVER_INITIATION_INFORMATION)Irp->AssociatedIrp.SystemBuffer;
status = PsLookupProcessByProcessId(information->protected_process_id, &eprocess);
if (!NT_SUCCESS(status))
return status;
KeAcquireGuardedMutex(&process_config.lock);
process_config.protected_process_eprocess = eprocess;
process_config.um_handle = information->protected_process_id;
process_config.km_handle = PsGetProcessId(eprocess);
process_config.initialised = TRUE;
KeReleaseGuardedMutex(&process_config.lock);
return status;
}
STATIC
VOID
InitialiseProcessConfigOnDriverEntry()
{
KeInitializeGuardedMutex(&process_config.lock);
}
STATIC
VOID
CleanupDriverConfigOnUnload()
{
FreeDriverConfigurationStringBuffers();
FreeGlobalReportQueueObjects();
IoDeleteSymbolicLink(&driver_config.device_symbolic_link);
}
STATIC
VOID
DriverUnload(
_In_ PDRIVER_OBJECT DriverObject
)
{
DEBUG_LOG("Unloading driver...");
//PsSetCreateProcessNotifyRoutine( ProcessCreateNotifyRoutine, TRUE );
//QueryActiveApcContextsForCompletion();
/* dont unload while we have active APC operations */
while (FreeAllApcContextStructures() == FALSE)
YieldProcessor();
/* This is safe to call even if the callbacks have already been disabled */
CleanupDriverCallbacksOnDriverUnload();
CleanupDriverConfigOnUnload();
IoDeleteDevice(DriverObject->DeviceObject);
DEBUG_LOG("Driver unloaded");
}
VOID
TerminateProtectedProcessOnViolation()
{
NTSTATUS status;
ULONG process_id;
GetProtectedProcessId(&process_id);
if (!process_id)
{
DEBUG_ERROR("Failed to terminate process as process id is null");
return;
}
/*
* Make sure we pass a km handle to ZwTerminateProcess and NOT a usermode handle.
*/
status = ZwTerminateProcess(process_id, STATUS_SYSTEM_INTEGRITY_POLICY_VIOLATION);
if (!NT_SUCCESS(status))
{
/*
* We don't want to clear the process config if ZwTerminateProcess fails
* so we can try again.
*/
DEBUG_ERROR("ZwTerminateProcess failed with status %x", status);
return;
}
ClearProcessConfigOnProcessTermination();
}
NTSTATUS
DriverEntry(
_In_ PDRIVER_OBJECT DriverObject,
_In_ PUNICODE_STRING RegistryPath
)
{
BOOLEAN flag = FALSE;
NTSTATUS status;
status = InitialiseDriverConfigOnDriverEntry(RegistryPath);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("InitialiseDriverConfigOnDriverEntry failed with status %x", status);
return status;
}
InitialiseProcessConfigOnDriverEntry();
status = IoCreateDevice(
DriverObject,
NULL,
&driver_config.device_name,
FILE_DEVICE_UNKNOWN,
FILE_DEVICE_SECURE_OPEN,
FALSE,
&DriverObject->DeviceObject
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("IoCreateDevice failed with status %x", status);
FreeDriverConfigurationStringBuffers();
return STATUS_FAILED_DRIVER_ENTRY;
}
status = IoCreateSymbolicLink(
&driver_config.device_symbolic_link,
&driver_config.device_name
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("failed to create symbolic link");
FreeDriverConfigurationStringBuffers();
IoDeleteDevice(DriverObject->DeviceObject);
return STATUS_FAILED_DRIVER_ENTRY;
}
DriverObject->MajorFunction[IRP_MJ_CREATE] = DeviceCreate;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = DeviceClose;
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DeviceControl;
DriverObject->DriverUnload = DriverUnload;
InitialiseGlobalReportQueue(&flag);
if (!flag)
{
DEBUG_ERROR("failed to init report queue");
FreeDriverConfigurationStringBuffers();
IoDeleteSymbolicLink(&driver_config.device_symbolic_link);
IoDeleteDevice(DriverObject->DeviceObject);
return STATUS_FAILED_DRIVER_ENTRY;
}
DEBUG_LOG("DonnaAC Driver Entry Complete");
return STATUS_SUCCESS;
}