mirror-ac/driver/modules.c
2024-08-04 16:30:31 +10:00

2145 lines
No EOL
61 KiB
C

#include "modules.h"
#include "apc.h"
#include "callbacks.h"
#include "containers/tree.h"
#include "crypt.h"
#include "driver.h"
#include "ia32.h"
#include "imports.h"
#include "io.h"
#include "pe.h"
#include "thread.h"
#include "lib/stdlib.h"
#define WHITELISTED_MODULE_TAG 'whte'
#define NMI_DELAY 200 * 10000
#define WHITELISTED_MODULE_COUNT 11
#define MODULE_MAX_STRING_SIZE 256
#define NTOSKRNL 0
#define CLASSPNP 1
#define WDF01000 2
/*
* The modules seen in the array below have been seen to commonly hook other
* drivers' IOCTL dispatch routines. Its possible to see this by using
* WinObjEx64 and checking which module each individual dispatch routine lies
* in. These modules are then addded to the list (in addition to either the
* driver itself or ntoskrnl) which is seen as a valid region for a drivers
* dispatch routine to lie within.
*/
CHAR WHITELISTED_MODULES[WHITELISTED_MODULE_COUNT][MODULE_MAX_STRING_SIZE] = {
"ntoskrnl.exe",
"CLASSPNP.SYS",
"Wdf01000.sys",
"HIDCLASS.SYS",
"storport.sys",
"dxgkrnl.sys",
"ndis.sys",
"ks.sys",
"portcls.sys",
"rdbss.sys",
"LXCORE.SYS"};
#define MODULE_REPORT_DRIVER_NAME_BUFFER_SIZE 128
#define SYSTEM_IDLE_PROCESS_ID 0
#define SYSTEM_PROCESS_ID 4
#define SVCHOST_PROCESS_ID 8
typedef struct _WHITELISTED_REGIONS {
UINT64 base;
UINT64 size;
} WHITELISTED_REGIONS, *PWHITELISTED_REGIONS;
typedef struct _NMI_CONTEXT {
UINT64 interrupted_rip;
UINT64 interrupted_rsp;
UINT64 kthread;
UINT32 callback_count;
BOOLEAN user_thread;
} NMI_CONTEXT, *PNMI_CONTEXT;
#define DPC_STACKWALK_STACKFRAME_COUNT 10
/* the first 3 frames are isr handlers which we dont care about */
#define DPC_STACKWALK_FRAMES_TO_SKIP 3
typedef struct _DPC_CONTEXT {
UINT64 stack_frame[DPC_STACKWALK_STACKFRAME_COUNT];
UINT16 frames_captured;
volatile BOOLEAN executed;
} DPC_CONTEXT, *PDPC_CONTEXT;
// clang-format off
STATIC
VOID
PopulateWhitelistedModuleBuffer(
_Inout_ PWHITELISTED_REGIONS Whitelist,
_In_ PSYSTEM_MODULES SystemModules
);
STATIC
NTSTATUS
ValidateDriverObjectsWrapper(
_In_ PSYSTEM_MODULES SystemModules
);
STATIC
NTSTATUS
AnalyseNmiData(
_In_ PNMI_CONTEXT NmiContext,
_In_ PSYSTEM_MODULES SystemModules
);
STATIC
NTSTATUS
LaunchNonMaskableInterrupt();
STATIC
VOID
ApcRundownRoutine(
_In_ PRKAPC Apc
);
STATIC
VOID
ApcKernelRoutine(
_In_ PRKAPC Apc,
_Inout_ _Deref_pre_maybenull_ PKNORMAL_ROUTINE* NormalRoutine,
_Inout_ _Deref_pre_maybenull_ PVOID* NormalContext,
_Inout_ _Deref_pre_maybenull_ PVOID* SystemArgument1,
_Inout_ _Deref_pre_maybenull_ PVOID* SystemArgument2);
STATIC
VOID
ApcNormalRoutine(
_In_opt_ PVOID NormalContext,
_In_opt_ PVOID SystemArgument1,
_In_opt_ PVOID SystemArgument2
);
STATIC
VOID
ValidateThreadViaKernelApcCallback(
_In_ PTHREAD_LIST_ENTRY ThreadListEntry,
_Inout_opt_ PVOID Context
);
// clang-format on
#ifdef ALLOC_PRAGMA
# pragma alloc_text(PAGE, FindSystemModuleByName)
# pragma alloc_text(PAGE, PopulateWhitelistedModuleBuffer)
# pragma alloc_text(PAGE, GetSystemModuleInformation)
# pragma alloc_text(PAGE, ValidateDriverObjectsWrapper)
# pragma alloc_text(PAGE, HandleValidateDriversIOCTL)
# pragma alloc_text(PAGE, IsInstructionPointerInInvalidRegion)
# pragma alloc_text(PAGE, AnalyseNmiData)
# pragma alloc_text(PAGE, LaunchNonMaskableInterrupt)
# pragma alloc_text(PAGE, HandleNmiIOCTL)
# pragma alloc_text(PAGE, ApcRundownRoutine)
# pragma alloc_text(PAGE, ApcKernelRoutine)
# pragma alloc_text(PAGE, ApcNormalRoutine)
# pragma alloc_text(PAGE, ValidateThreadsViaKernelApc)
# pragma alloc_text(PAGE, ValidateThreadViaKernelApcCallback)
#endif
/*
* This returns a reference to an entry in the system modules array retrieved
* via GetSystemModuleInformation. It's important to remember we don't free the
* modules once we retrieve this reference, and instead only free them when we
* are done using it.
*/
PRTL_MODULE_EXTENDED_INFO
FindSystemModuleByName(
_In_ LPCSTR ModuleName, _In_ PSYSTEM_MODULES SystemModules)
{
PAGED_CODE();
if (!ModuleName || !SystemModules)
return NULL;
PRTL_MODULE_EXTENDED_INFO modules =
(PRTL_MODULE_EXTENDED_INFO)SystemModules->address;
for (INT index = 0; index < SystemModules->module_count; index++) {
if (IntFindSubstring(modules[index].FullPathName, ModuleName)) {
return &modules[index];
}
}
return NULL;
}
STATIC
VOID
PopulateWhitelistedModuleBuffer(
_Inout_ PWHITELISTED_REGIONS Whitelist, _In_ PSYSTEM_MODULES SystemModules)
{
PAGED_CODE();
LPCSTR entry = NULL;
PRTL_MODULE_EXTENDED_INFO module = NULL;
PWHITELISTED_REGIONS region = NULL;
for (UINT32 index = 0; index < WHITELISTED_MODULE_COUNT; index++) {
entry = WHITELISTED_MODULES[index];
module = FindSystemModuleByName(entry, SystemModules);
/* not everyone will contain all whitelisted modules */
if (!module)
continue;
region = &Whitelist[index];
region->base = (UINT64)module->ImageBase;
region->size = (UINT64)module->ImageBase + module->ImageSize;
}
}
STATIC
UINT64
GetDriverMajorDispatchFunction(_In_ PDRIVER_OBJECT Driver)
{
return Driver->MajorFunction[IRP_MJ_DEVICE_CONTROL];
}
STATIC
BOOLEAN
DoesDriverHaveInvalidDispatchRoutine(
_In_ PDRIVER_OBJECT Driver,
_In_ PSYSTEM_MODULES Modules,
_In_ PWHITELISTED_REGIONS Regions)
{
PAGED_CODE();
UINT64 dispatch_function = 0;
UINT64 module_base = 0;
UINT64 module_end = 0;
PRTL_MODULE_EXTENDED_INFO module = NULL;
dispatch_function = GetDriverMajorDispatchFunction(Driver);
if (!dispatch_function)
return FALSE;
module = (PRTL_MODULE_EXTENDED_INFO)Modules->address;
for (UINT32 index = 0; index < Modules->module_count; index++) {
if (module[index].ImageBase != Driver->DriverStart)
continue;
/* make sure our driver has a device object which is required
* for IOCTL */
if (!Driver->DeviceObject)
return FALSE;
module_base = (UINT64)module[index].ImageBase;
module_end = module_base + module[index].ImageSize;
/* firstly, check if its inside its own module */
if (dispatch_function >= module_base && dispatch_function <= module_end)
return FALSE;
/*
* The WDF framework and other low level drivers often hook the
* dispatch routines when initiating the respective config of
* their framework or system. With a bit of digging you can view
* the drivers reponsible for the hooks. What this means is that
* there will be legit drivers with dispatch routines that point
* outside of ntoskrnl and their own memory region. So, I have
* formed a list which contains the drivers that perform these
* hooks and we iteratively check if the dispatch routine is
* contained within one of these whitelisted regions. A note on
* how to imrpove this is the fact that a code cave can be used
* inside a whitelisted region which then jumps to an invalid
* region such as a manually mapped driver. So in the future we
* should implement a function which checks for standard hook
* implementations like mov rax jmp rax etc.
*/
for (UINT32 index = 0; index < WHITELISTED_MODULE_COUNT; index++) {
if (dispatch_function >= Regions[index].base &&
dispatch_function <= Regions[index].size)
return FALSE;
}
DEBUG_WARNING(
"Driver with invalid dispatch routine found: %s",
module[index].FullPathName);
return TRUE;
}
return FALSE;
}
STATIC
BOOLEAN
DoesDriverObjectHaveBackingModule(
_In_ PSYSTEM_MODULES ModuleInformation, _In_ PDRIVER_OBJECT DriverObject)
{
PAGED_CODE();
PRTL_MODULE_EXTENDED_INFO modules = NULL;
PRTL_MODULE_EXTENDED_INFO entry = NULL;
modules = (PRTL_MODULE_EXTENDED_INFO)ModuleInformation->address;
for (UINT32 index = 0; index < ModuleInformation->module_count; index++) {
entry = &modules[index];
if (entry->ImageSize == 0 || entry->ImageBase == 0)
return STATUS_INVALID_MEMBER;
if (entry->ImageBase == DriverObject->DriverStart) {
return TRUE;
}
}
DEBUG_WARNING(
"Driver found with no backing system image at address: %llx",
(UINT64)DriverObject->DriverStart);
return FALSE;
}
FORCEINLINE
STATIC
VOID
InitSystemModulesStructure(
_Out_ PSYSTEM_MODULES Modules, _In_ PVOID Buffer, _In_ INT Count)
{
Modules->address = Buffer;
Modules->module_count = Count;
}
// https://imphash.medium.com/windows-process-internals-a-few-concepts-to-know-before-jumping-on-memory-forensics-part-3-4a0e195d947b
NTSTATUS
GetSystemModuleInformation(_Out_ PSYSTEM_MODULES ModuleInformation)
{
PAGED_CODE();
ULONG size = 0;
NTSTATUS status = STATUS_UNSUCCESSFUL;
PRTL_MODULE_EXTENDED_INFO buffer = NULL;
if (!ModuleInformation)
return STATUS_INVALID_PARAMETER;
status = RtlQueryModuleInformation(
&size,
sizeof(RTL_MODULE_EXTENDED_INFO),
NULL);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("RtlQueryModuleInformation failed with status %x", status);
return status;
}
buffer = ExAllocatePool2(POOL_FLAG_NON_PAGED, size, SYSTEM_MODULES_POOL);
if (!buffer) {
DEBUG_ERROR("Failed to allocate pool LOL");
return STATUS_MEMORY_NOT_ALLOCATED;
}
status = RtlQueryModuleInformation(
&size,
sizeof(RTL_MODULE_EXTENDED_INFO),
buffer);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"RtlQueryModuleInformation 2 failed with status %x",
status);
ExFreePoolWithTag(buffer, SYSTEM_MODULES_POOL);
return STATUS_ABANDONED;
}
InitSystemModulesStructure(
ModuleInformation,
buffer,
ARRAYLEN(size, RTL_MODULE_EXTENDED_INFO));
return status;
}
STATIC
VOID
ReportInvalidDriverObject(_In_ PDRIVER_OBJECT Driver, _In_ UINT32 ReportSubType)
{
UINT32 len = 0;
NTSTATUS status = STATUS_UNSUCCESSFUL;
ANSI_STRING string = {0};
PMODULE_VALIDATION_FAILURE report = NULL;
len = CryptRequestRequiredBufferLength(sizeof(MODULE_VALIDATION_FAILURE));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, POOL_TAG_INTEGRITY);
if (!report)
return;
INIT_REPORT_PACKET(report, REPORT_MODULE_VALIDATION_FAILURE, ReportSubType);
report->driver_base_address = Driver->DriverStart;
report->driver_size = Driver->DriverSize;
string.Length = 0;
string.MaximumLength = MODULE_REPORT_DRIVER_NAME_BUFFER_SIZE;
string.Buffer = &report->driver_name;
/* Continue regardless of result */
ImpRtlUnicodeStringToAnsiString(&string, &Driver->DriverName, FALSE);
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, REPORT_POOL_TAG);
return;
}
IrpQueueSchedulePacket(report, len);
}
FORCEINLINE
STATIC
POBJECT_DIRECTORY_ENTRY
GetNextObject(_In_ POBJECT_DIRECTORY_ENTRY Entry)
{
return Entry->ChainLink;
}
FORCEINLINE
STATIC
PVOID
GetObjectFromDirectory(_In_ POBJECT_DIRECTORY_ENTRY Entry)
{
return Entry->Object;
}
STATIC
VOID
ValidateDriverObjects(
_In_ PSYSTEM_MODULES Modules,
_In_ POBJECT_DIRECTORY_ENTRY Entry,
_In_ PWHITELISTED_REGIONS Whitelist)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
POBJECT_DIRECTORY_ENTRY entry = Entry;
PDRIVER_OBJECT driver = NULL;
while (entry) {
driver = GetObjectFromDirectory(entry);
if (!DoesDriverObjectHaveBackingModule(Modules, driver)) {
ReportInvalidDriverObject(driver, REPORT_SUBTYPE_NO_BACKING_MODULE);
}
if (DoesDriverHaveInvalidDispatchRoutine(driver, Modules, Whitelist)) {
ReportInvalidDriverObject(driver, REPORT_SUBTYPE_INVALID_DISPATCH);
}
entry = GetNextObject(entry);
}
}
/* TODO: this function needs to be rewritten. Infact, this entire file needs to
* be rewritten.
* god this is so bad.
*/
STATIC
NTSTATUS
ValidateDriverObjectsWrapper(_In_ PSYSTEM_MODULES SystemModules)
{
PAGED_CODE();
HANDLE handle = NULL;
OBJECT_ATTRIBUTES oa = {0};
PVOID dir = {0};
UNICODE_STRING dir_name = {0};
PWHITELISTED_REGIONS wl = NULL;
NTSTATUS status = STATUS_UNSUCCESSFUL;
POBJECT_DIRECTORY dir_object = NULL;
POBJECT_DIRECTORY_ENTRY bucket = NULL;
ImpRtlInitUnicodeString(&dir_name, L"\\Driver");
InitializeObjectAttributes(
&oa,
&dir_name,
OBJ_CASE_INSENSITIVE,
NULL,
NULL);
status = ImpZwOpenDirectoryObject(&handle, DIRECTORY_ALL_ACCESS, &oa);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ZwOpenDirectoryObject failed with status %x", status);
return status;
}
status = ImpObReferenceObjectByHandle(
handle,
DIRECTORY_ALL_ACCESS,
NULL,
KernelMode,
&dir,
NULL);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ObReferenceObjectByHandle failed with status %x", status);
ImpZwClose(handle);
return status;
}
/*
* Windows organises its drivers in object directories (not the same as
* files directories). For the driver directory, there are 37 entries,
* each driver is hashed and indexed. If there is a driver with a
* duplicate index, it is inserted into same index in a linked list
* using the _OBJECT_DIRECTORY_ENTRY struct. So to enumerate all drivers
* we visit each entry in the hashmap, enumerate all objects in the
* linked list at entry j then we increment the hashmap index i. The
* motivation behind this is that when a driver is accessed, it is
* brought to the first index in the linked list, so drivers that are
* accessed the most can be accessed quickly
*/
dir_object = (POBJECT_DIRECTORY)dir;
ImpExAcquirePushLockExclusiveEx(&dir_object->Lock, NULL);
wl = ImpExAllocatePool2(
POOL_FLAG_NON_PAGED,
WHITELISTED_MODULE_COUNT * sizeof(WHITELISTED_REGIONS),
WHITELISTED_MODULE_TAG);
if (!wl)
goto end;
PopulateWhitelistedModuleBuffer(wl, SystemModules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"PopulateWhitelistedModuleBuffer failed with status %x",
status);
goto end;
}
for (UINT32 index = 0; index < NUMBER_HASH_BUCKETS; index++) {
bucket = dir_object->HashBuckets[index];
ValidateDriverObjects(SystemModules, bucket, wl);
}
end:
if (wl)
ImpExFreePoolWithTag(wl, WHITELISTED_MODULE_TAG);
ImpExReleasePushLockExclusiveEx(&dir_object->Lock, 0);
ImpObDereferenceObject(dir);
ImpZwClose(handle);
return STATUS_SUCCESS;
}
FORCEINLINE
STATIC
BOOLEAN
IsUserModeAddress(_In_ UINT64 Rip)
{
return Rip <= WINDOWS_USERMODE_MAX_ADDRESS ? TRUE : FALSE;
}
NTSTATUS
HandleValidateDriversIOCTL()
{
PAGED_CODE();
NTSTATUS status = STATUS_UNSUCCESSFUL;
ULONG length = 0;
SYSTEM_MODULES modules = {0};
status = GetSystemModuleInformation(&modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetSystemModuleInformation failed with status %x", status);
return status;
}
status = ValidateDriverObjectsWrapper(&modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ValidateDriverObjects failed with status %x", status);
goto end;
}
end:
if (modules.address)
ImpExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
return status;
}
/*
* TODO: this probably doesnt need to return an NTSTATUS, we can just return a
* boolean and remove the out variable.
*/
BOOLEAN
IsInstructionPointerInInvalidRegion(
_In_ UINT64 Rip, _In_ PSYSTEM_MODULES SystemModules)
{
PAGED_CODE();
PRTL_MODULE_EXTENDED_INFO modules =
(PRTL_MODULE_EXTENDED_INFO)SystemModules->address;
/* Note that this does not check for HAL or PatchGuard Execution */
for (UINT32 index = 0; index < SystemModules->module_count; index++) {
UINT64 base = (UINT64)modules[index].ImageBase;
UINT64 end = base + modules[index].ImageSize;
if (Rip >= base && Rip <= end) {
return FALSE;
}
}
return TRUE;
}
BOOLEAN
IsInstructionPointerInsideSpecifiedModule(
_In_ UINT64 Rip, _In_ PRTL_MODULE_EXTENDED_INFO Module)
{
UINT64 base = (UINT64)Module->ImageBase;
UINT64 end = base + Module->ImageSize;
if (Rip >= base && Rip <= end)
return TRUE;
return FALSE;
}
STATIC
VOID
ReportNmiBlocking()
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PNMI_CALLBACK_FAILURE report = NULL;
len = CryptRequestRequiredBufferLength(sizeof(NMI_CALLBACK_FAILURE));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!report)
return STATUS_INSUFFICIENT_RESOURCES;
INIT_REPORT_PACKET(report, REPORT_NMI_CALLBACK_FAILURE, 0);
report->kthread_address = NULL;
report->invalid_rip = NULL;
report->were_nmis_disabled = TRUE;
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, REPORT_POOL_TAG);
return;
}
IrpQueueSchedulePacket(report, len);
}
STATIC
VOID
ReportMissingCidTableEntry(_In_ PNMI_CONTEXT Context)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PHIDDEN_SYSTEM_THREAD_REPORT report = NULL;
len = CryptRequestRequiredBufferLength(sizeof(HIDDEN_SYSTEM_THREAD_REPORT));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!report)
return;
INIT_REPORT_PACKET(report, REPORT_HIDDEN_SYSTEM_THREAD, 0);
report->found_in_kthreadlist = FALSE; // wip
report->found_in_pspcidtable = FALSE;
report->thread_id = ImpPsGetThreadId(Context->kthread);
report->thread_address = Context->kthread;
IntCopyMemory(report->thread, Context->kthread, sizeof(report->thread));
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, REPORT_POOL_TAG);
return;
}
IrpQueueSchedulePacket(report, len);
}
STATIC
VOID
ReportInvalidRipFoundDuringNmi(
_In_ PNMI_CONTEXT Context, _In_ UINT32 ReportSubCode)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PNMI_CALLBACK_FAILURE report = NULL;
len = CryptRequestRequiredBufferLength(sizeof(HIDDEN_SYSTEM_THREAD_REPORT));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!report)
return;
INIT_REPORT_PACKET(report, REPORT_NMI_CALLBACK_FAILURE, ReportSubCode);
report->kthread_address = Context->kthread;
report->invalid_rip = Context->interrupted_rip;
report->were_nmis_disabled = FALSE;
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, REPORT_POOL_TAG);
return;
}
IrpQueueSchedulePacket(report, len);
}
#define INSTRUCTION_UD2_BYTE_1 0x0F
#define INSTRUCTION_UD2_BYTE_2 0x0B
#define INSTRUCTION_INT3_BYTE_1 0xCC
STATIC
BOOLEAN
DoesRetInstructionCauseException(_In_ UINT64 ReturnAddress)
{
/* UD2 instruction is 2 bytes*/
UCHAR opcodes[2] = {0};
/* we deal with um later */
if (IsUserModeAddress(ReturnAddress))
return FALSE;
if (!MmIsAddressValid(ReturnAddress))
return FALSE;
/* Shoudln't really ever occur */
__try {
IntCopyMemory(&opcodes, ReturnAddress, sizeof(opcodes));
}
__except (EXCEPTION_EXECUTE_HANDLER) {
return FALSE;
}
if (opcodes[0] == INSTRUCTION_UD2_BYTE_1 &&
opcodes[1] == INSTRUCTION_UD2_BYTE_2)
return TRUE;
if (opcodes[0] == INSTRUCTION_INT3_BYTE_1)
return TRUE;
DEBUG_VERBOSE(
"Ret address instruction doesnt unconditionally throw exception");
return FALSE;
}
/*
* todo: i think we should split this function up into each analysis i.e one for
* the interrupted rip, one for the cid etc.
*/
STATIC
NTSTATUS
AnalyseNmiData(_In_ PNMI_CONTEXT NmiContext, _In_ PSYSTEM_MODULES Modules)
{
PAGED_CODE();
NTSTATUS status = STATUS_UNSUCCESSFUL;
BOOLEAN flag = FALSE;
PNMI_CONTEXT context = NULL;
if (!NmiContext || !Modules)
return STATUS_INVALID_PARAMETER;
for (UINT32 core = 0; core < ImpKeQueryActiveProcessorCount(0); core++) {
context = &NmiContext[core];
/* Make sure our NMIs were run */
if (!context->callback_count) {
ReportNmiBlocking();
return STATUS_SUCCESS;
}
DEBUG_VERBOSE(
"Analysing Nmi Data for: cpu number: %i callback count: %lx",
core,
context->callback_count);
/*
* Our NMI callback allows us to interrupt every running thread
* on each core. Now it is common practice for malicious
* programs to either unlink their thread from the KTHREAD
* linked list or remove their threads entry from the
* PspCidTable or both. Now the reason an unlinked thread can
* still be scheduled is because the scheduler keeps a seperate
* list that it uses to schedule threads. It then places these
* threads in the KPRCB in either the CurrentThread, IdleThread
* or NextThread.
*
* Since you can't just set a threads affinity to enumerate over
* all cores and read the KPCRB->CurrentThread (since it will
* just show your thread) we have to interrupt the thread. So
* below we are validating that the thread is indeed in our own
* threads list using our callback routine and then using
* PsGetThreadId
*
* I also want to integrate a way to SAFELY determine whether a
* thread has been removed from the KTHREADs linked list, maybe
* PsGetNextProcess ?
*/
if (!DoesThreadHaveValidCidEntry(context->kthread))
ReportMissingCidTableEntry(context);
if (IsInstructionPointerInInvalidRegion(
context->interrupted_rip,
Modules))
ReportInvalidRipFoundDuringNmi(context, 0);
if (context->user_thread)
continue;
if (DoesRetInstructionCauseException(context->interrupted_rip))
ReportInvalidRipFoundDuringNmi(
context,
REPORT_SUBTYPE_EXCEPTION_THROWING_RET);
}
return STATUS_SUCCESS;
}
FORCEINLINE
STATIC
TASK_STATE_SEGMENT_64*
GetTaskStateSegment(_In_ UINT64 Kpcr)
{
return *(TASK_STATE_SEGMENT_64**)(Kpcr + KPCR_TSS_BASE_OFFSET);
}
FORCEINLINE
STATIC
PMACHINE_FRAME
GetIsrMachineFrame(_In_ TASK_STATE_SEGMENT_64* TaskStateSegment)
{
return TaskStateSegment->Ist3 - sizeof(MACHINE_FRAME);
}
STATIC BOOLEAN
NmiCallback(_Inout_opt_ PVOID Context, _In_ BOOLEAN Handled)
{
UNREFERENCED_PARAMETER(Handled);
ULONG core = KeGetCurrentProcessorNumber();
PNMI_CONTEXT context = &((PNMI_CONTEXT)Context)[core];
UINT64 kpcr = 0;
TASK_STATE_SEGMENT_64* tss = NULL;
PMACHINE_FRAME machine_frame = NULL;
if (!ARGUMENT_PRESENT(Context))
return TRUE;
/*
* To find the IRETQ frame (MACHINE_FRAME) we need to find the top of
* the NMI ISR stack. This is stored at TSS->Ist[3]. To find the TSS, we
* can read it from KPCR->TSS_BASE. Once we have our TSS, we can read
* the value at TSS->Ist[3] which points to the top of the ISR stack,
* and subtract the size of the MACHINE_FRAME struct. Allowing us read
* the interrupted RIP.
*
* The reason this is needed is because RtlCaptureStackBackTrace is not
* safe to run at IRQL = HIGH_LEVEL, hence we need to manually unwind
* the ISR stack to find the interrupted rip.
*/
kpcr = __readmsr(IA32_GS_BASE);
tss = GetTaskStateSegment(kpcr);
machine_frame = GetIsrMachineFrame(tss);
if (IsUserModeAddress(machine_frame->rip))
context->user_thread = TRUE;
context->interrupted_rip = machine_frame->rip;
context->interrupted_rsp = machine_frame->rsp;
context->kthread = PsGetCurrentThread();
context->callback_count++;
return TRUE;
}
#define NMI_DELAY_TIME 200 * 10000
STATIC
NTSTATUS
LaunchNonMaskableInterrupt()
{
PAGED_CODE();
PKAFFINITY_EX affinity = NULL;
LARGE_INTEGER delay = {0};
affinity = ImpExAllocatePool2(
POOL_FLAG_NON_PAGED,
sizeof(KAFFINITY_EX),
PROC_AFFINITY_POOL);
if (!affinity)
return STATUS_MEMORY_NOT_ALLOCATED;
delay.QuadPart -= NMI_DELAY_TIME;
for (ULONG core = 0; core < ImpKeQueryActiveProcessorCount(0); core++) {
ImpKeInitializeAffinityEx(affinity);
ImpKeAddProcessorAffinityEx(affinity, core);
HalSendNMI(affinity);
/*
* Only a single NMI can be active at any given time, so
* arbitrarily delay execution to allow time for the NMI to be
* processed
*/
ImpKeDelayExecutionThread(KernelMode, FALSE, &delay);
}
ImpExFreePoolWithTag(affinity, PROC_AFFINITY_POOL);
return STATUS_SUCCESS;
}
NTSTATUS
HandleNmiIOCTL()
{
PAGED_CODE();
NTSTATUS status = STATUS_UNSUCCESSFUL;
PVOID handle = NULL;
SYSTEM_MODULES modules = {0};
PNMI_CONTEXT context = NULL;
UINT32 size = 0;
size = ImpKeQueryActiveProcessorCount(0) * sizeof(NMI_CONTEXT);
/* Ensure we don't continue if another NMI operation is in progress */
if (IsNmiInProgress())
return STATUS_ALREADY_COMMITTED;
status = ValidateHalDispatchTables();
/* do we continue ? probably. */
if (!NT_SUCCESS(status))
DEBUG_ERROR("ValidateHalDispatchTables failed with status %x", status);
context = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, size, NMI_CONTEXT_POOL);
if (!context) {
UnsetNmiInProgressFlag();
return STATUS_MEMORY_NOT_ALLOCATED;
}
/*
* We want to register and unregister our callback each time so it
* becomes harder for people to hook our callback and get up to some
* funny business
*/
handle = ImpKeRegisterNmiCallback(NmiCallback, context);
if (!handle) {
DEBUG_ERROR("KeRegisterNmiCallback failed with no status.");
goto end;
}
/*
* We query the system modules each time since they can potentially
* change at any time
*/
status = GetSystemModuleInformation(&modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("Error retriving system module information");
goto end;
}
status = LaunchNonMaskableInterrupt();
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("Error running NMI callbacks");
goto end;
}
status = AnalyseNmiData(context, &modules);
if (!NT_SUCCESS(status))
DEBUG_ERROR("Error analysing nmi data");
end:
if (modules.address)
ImpExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
if (context)
ImpExFreePoolWithTag(context, NMI_CONTEXT_POOL);
if (handle)
ImpKeDeregisterNmiCallback(handle);
UnsetNmiInProgressFlag();
return status;
}
/*
* The RundownRoutine is executed if the thread terminates before the APC was
* delivered to user mode.
*/
STATIC
VOID
ApcRundownRoutine(_In_ PRKAPC Apc)
{
PAGED_CODE();
FreeApcAndDecrementApcCount(Apc, APC_CONTEXT_ID_STACKWALK);
}
STATIC
VOID
ReportApcStackwalkViolation(_In_ UINT64 Rip)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PAPC_STACKWALK_REPORT report = NULL;
len = CryptRequestRequiredBufferLength(sizeof(APC_STACKWALK_REPORT));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!report)
return;
INIT_REPORT_PACKET(report, REPORT_APC_STACKWALK, 0);
report->kthread_address = (UINT64)KeGetCurrentThread();
report->invalid_rip = Rip;
// report->driver ?? todo!
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, REPORT_POOL_TAG);
return;
}
IrpQueueSchedulePacket(report, len);
}
/*
* The KernelRoutine is executed in kernel mode at APC_LEVEL before the APC is
* delivered. This is also where we want to free our APC object.
*/
STATIC
VOID
ApcKernelRoutine(
_In_ PRKAPC Apc,
_Inout_ _Deref_pre_maybenull_ PKNORMAL_ROUTINE* NormalRoutine,
_Inout_ _Deref_pre_maybenull_ PVOID* NormalContext,
_Inout_ _Deref_pre_maybenull_ PVOID* SystemArgument1,
_Inout_ _Deref_pre_maybenull_ PVOID* SystemArgument2)
{
PAGED_CODE();
NTSTATUS status = STATUS_UNSUCCESSFUL;
PVOID buffer = NULL;
INT frames_captured = 0;
UINT64 frame = 0;
PAPC_STACKWALK_CONTEXT context = NULL;
PTHREAD_LIST_ENTRY entry = NULL;
context = (PAPC_STACKWALK_CONTEXT)Apc->NormalContext;
FindThreadListEntryByThreadAddress(KeGetCurrentThread(), &entry);
if (!entry)
return;
buffer = ImpExAllocatePool2(
POOL_FLAG_NON_PAGED,
STACK_FRAME_POOL_SIZE,
POOL_TAG_APC);
if (!buffer)
goto free;
frames_captured = ImpRtlCaptureStackBackTrace(
NULL,
STACK_FRAME_POOL_SIZE / sizeof(UINT64),
buffer,
NULL);
if (!frames_captured)
goto free;
for (UINT32 index = 0; index < frames_captured; index++) {
frame = ((PUINT64)buffer)[index];
/*
* Apc->NormalContext holds the address of our context data
* structure that we passed into KeInitializeApc as the last
* argument.
*/
if (IsInstructionPointerInInvalidRegion(frame, context->modules)) {
ReportApcStackwalkViolation(frame);
}
}
free:
if (buffer)
ImpExFreePoolWithTag(buffer, POOL_TAG_APC);
FreeApcAndDecrementApcCount(Apc, APC_CONTEXT_ID_STACKWALK);
entry->apc = NULL;
entry->apc_queued = FALSE;
}
/*
* The NormalRoutine is executed in user mode when the APC is delivered.
*/
STATIC
VOID
ApcNormalRoutine(
_In_opt_ PVOID NormalContext,
_In_opt_ PVOID SystemArgument1,
_In_opt_ PVOID SystemArgument2)
{
PAGED_CODE();
}
#define THREAD_STATE_TERMINATED 4
#define THREAD_STATE_WAIT 5
#define THREAD_STATE_INIT 0
STATIC
VOID
ValidateThreadViaKernelApcCallback(
_In_ PTHREAD_LIST_ENTRY Entry, _Inout_opt_ PVOID Context)
{
PAGED_CODE();
PKAPC apc = NULL;
PLONG flags = NULL;
PCHAR prev_mode = NULL;
PUCHAR state = NULL;
BOOLEAN apc_queueable = FALSE;
LPCSTR proc_name = NULL;
PAPC_STACKWALK_CONTEXT context = NULL;
context = (PAPC_STACKWALK_CONTEXT)Context;
if (!ARGUMENT_PRESENT(Context))
return;
proc_name = ImpPsGetProcessImageFileName(Entry->owning_process);
/*
* Its possible to set the KThread->ApcQueueable flag to false ensuring
* that no APCs can be queued to the thread, as KeInsertQueueApc will
* check this flag before queueing an APC so lets make sure we flip this
* before before queueing ours. Since we filter out any system threads
* this should be fine... c:
*/
flags = RVA(PLONG, Entry->thread, KTHREAD_MISC_FLAGS_OFFSET);
prev_mode = RVA(PCHAR, Entry->thread, KTHREAD_PREVIOUS_MODE_OFFSET);
state = RVA(PUCHAR, Entry->thread, KTHREAD_STATE_OFFSET);
/*
* For now, lets only check for system threads. However, we also want to
* check for threads executing in kernel mode, i.e KTHREAD->PreviousMode
* == UserMode.
*/
if (Entry->owning_process != PsInitialSystemProcess)
return;
if (Entry->thread == KeGetCurrentThread() || !Entry->thread)
return;
DEBUG_VERBOSE(
"Validating thread: %llx, process name: %s via kernel APC stackwalk.",
Entry->thread,
proc_name);
SetFlag(*flags, KTHREAD_MISC_FLAGS_ALERTABLE);
SetFlag(*flags, KTHREAD_MISC_FLAGS_APC_QUEUEABLE);
apc = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(KAPC), POOL_TAG_APC);
if (!apc)
return;
ImpKeInitializeApc(
apc,
Entry->thread,
OriginalApcEnvironment,
ApcKernelRoutine,
ApcRundownRoutine,
ApcNormalRoutine,
KernelMode,
Context);
if (!ImpKeInsertQueueApc(apc, NULL, NULL, IO_NO_INCREMENT)) {
DEBUG_ERROR("KeInsertQueueApc failed with no status.");
ImpExFreePoolWithTag(apc, POOL_TAG_APC);
return;
}
Entry->apc = apc;
Entry->apc_queued = TRUE;
IncrementApcCount(APC_CONTEXT_ID_STACKWALK);
}
FORCEINLINE
STATIC
VOID
SetApcAllocationInProgress(_In_ PAPC_STACKWALK_CONTEXT Context)
{
Context->header.allocation_in_progress = TRUE;
}
FORCEINLINE
STATIC
VOID
UnsetApcAllocationInProgress(_In_ PAPC_STACKWALK_CONTEXT Context)
{
Context->header.allocation_in_progress = FALSE;
}
/*
* Since NMIs are only executed on the thread that is running on each logical
* core, it makes sense to make use of APCs that, while can be masked off,
* provide us to easily issue a callback routine to threads we want a stack
* trace of. Hence by utilising both APCs and NMIs we get excellent coverage of
* the entire system.
*/
NTSTATUS
ValidateThreadsViaKernelApc()
{
PAGED_CODE();
NTSTATUS status = STATUS_UNSUCCESSFUL;
PAPC_STACKWALK_CONTEXT context = NULL;
/* First, ensure we dont already have an ongoing operation */
GetApcContext(&context, APC_CONTEXT_ID_STACKWALK);
if (context) {
DEBUG_WARNING("Existing APC_STACKWALK operation already in progress.");
return STATUS_SUCCESS;
}
context = ImpExAllocatePool2(
POOL_FLAG_NON_PAGED,
sizeof(APC_STACKWALK_CONTEXT),
POOL_TAG_APC);
if (!context)
return STATUS_MEMORY_NOT_ALLOCATED;
context->header.context_id = APC_CONTEXT_ID_STACKWALK;
context->modules = ImpExAllocatePool2(
POOL_FLAG_NON_PAGED,
sizeof(SYSTEM_MODULES),
POOL_TAG_APC);
if (!context->modules) {
ImpExFreePoolWithTag(context, POOL_TAG_APC);
return STATUS_MEMORY_NOT_ALLOCATED;
}
status = GetSystemModuleInformation(context->modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetSystemModuleInformation failed with status %x", status);
ImpExFreePoolWithTag(context->modules, POOL_TAG_APC);
ImpExFreePoolWithTag(context, POOL_TAG_APC);
return STATUS_MEMORY_NOT_ALLOCATED;
}
InsertApcContext(context);
SetApcAllocationInProgress(context);
ENUMERATE_THREADS(ValidateThreadViaKernelApcCallback, context);
UnsetApcAllocationInProgress(context);
return status;
}
VOID
FreeApcStackwalkApcContextInformation(_Inout_ PAPC_STACKWALK_CONTEXT Context)
{
if (Context->modules->address)
ImpExFreePoolWithTag(Context->modules->address, SYSTEM_MODULES_POOL);
if (Context->modules)
ImpExFreePoolWithTag(Context->modules, POOL_TAG_APC);
}
VOID
DpcStackwalkCallbackRoutine(
_In_ PKDPC Dpc,
_In_opt_ PVOID DeferredContext,
_In_opt_ PVOID SystemArgument1,
_In_opt_ PVOID SystemArgument2)
{
UNREFERENCED_PARAMETER(Dpc);
UNREFERENCED_PARAMETER(SystemArgument2);
PDPC_CONTEXT context = NULL;
if (!ARGUMENT_PRESENT(DeferredContext))
return;
context = &((PDPC_CONTEXT)DeferredContext)[KeGetCurrentProcessorNumber()];
context->frames_captured = ImpRtlCaptureStackBackTrace(
DPC_STACKWALK_FRAMES_TO_SKIP,
DPC_STACKWALK_STACKFRAME_COUNT,
&context->stack_frame,
NULL);
InterlockedExchange(&context->executed, TRUE);
#pragma warning(push)
#pragma warning(disable : C6387)
ImpKeSignalCallDpcDone(SystemArgument1);
#pragma warning(pop)
DEBUG_VERBOSE(
"Executed DPC on core: %lx, with %lx frames captured.",
KeGetCurrentProcessorNumber(),
context->frames_captured);
}
STATIC
VOID
ReportDpcStackwalkViolation(
_In_ PDPC_CONTEXT Context, _In_ UINT64 Frame, _In_ UINT32 ReportSubtype)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PDPC_STACKWALK_REPORT report = NULL;
len = CryptRequestRequiredBufferLength(sizeof(DPC_STACKWALK_REPORT));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!report)
return;
INIT_REPORT_PACKET(report, REPORT_DPC_STACKWALK, ReportSubtype);
report->kthread_address = PsGetCurrentThread();
report->invalid_rip = Frame;
// IntCopyMemory(report->driver,
// (UINT64)Context[core].stack_frame[frame]
// - 0x50,
// APC_STACKWALK_BUFFER_SIZE);
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, REPORT_POOL_TAG);
return;
}
IrpQueueSchedulePacket(report, len);
}
STATIC
VOID
ValidateDpcStackFrame(_In_ PDPC_CONTEXT Context, _In_ PSYSTEM_MODULES Modules)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
BOOLEAN flag = FALSE;
UINT64 rip = 0;
/* With regards to this, lets only check the interrupted rip */
if (DoesRetInstructionCauseException(Context->stack_frame[0]))
ReportDpcStackwalkViolation(
Context,
Context->stack_frame[0],
REPORT_SUBTYPE_EXCEPTION_THROWING_RET);
for (UINT32 frame = 0; frame < Context->frames_captured; frame++) {
rip = Context->stack_frame[frame];
if (IsInstructionPointerInInvalidRegion(rip, Modules))
ReportDpcStackwalkViolation(Context, rip, 0);
}
}
STATIC
VOID
ValidateDpcCapturedStack(
_In_ PSYSTEM_MODULES Modules, _In_ PDPC_CONTEXT Context)
{
BOOLEAN flag = FALSE;
PDPC_CONTEXT context = NULL;
UINT32 count = ImpKeQueryActiveProcessorCount(0);
for (UINT32 core = 0; core < count; core++) {
context = &Context[core];
if (!context->executed)
DEBUG_WARNING(
"DPC Stackwalk routine not executed. Core: %lx",
core);
ValidateDpcStackFrame(&Context[core], Modules);
}
}
/*
* Lets use DPCs as another form of stackwalking rather then inter-process
* interrupts because DPCs run at IRQL = DISPATCH_LEVEL, allowing us to use
* functions such as RtlCaptureStackBackTrace whereas IPIs run at IRQL =
* IPI_LEVEL. DPCs are also harder to mask compared to APCs which can be masked
* with the flip of a bit in the KTHREAD structure.
*/
NTSTATUS
DispatchStackwalkToEachCpuViaDpc()
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
PDPC_CONTEXT context = NULL;
SYSTEM_MODULES modules = {0};
UINT32 size = 0;
size = ImpKeQueryActiveProcessorCount(0) * sizeof(DPC_CONTEXT);
context = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, size, POOL_TAG_DPC);
if (!context)
return STATUS_MEMORY_NOT_ALLOCATED;
status = GetSystemModuleInformation(&modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetSystemModuleInformation failed with status %x", status);
goto end;
}
/* KeGenericCallDpc will queue a DPC to each processor with importance =
* HighImportance. This means our DPC will be inserted into the front of
* the DPC queue and executed immediately.*/
ImpKeGenericCallDpc(DpcStackwalkCallbackRoutine, context);
/* Flush all DPC's in the system to ensure ours have run */
KeFlushQueuedDpcs();
ValidateDpcCapturedStack(&modules, context);
end:
if (modules.address)
ImpExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
if (context)
ImpExFreePoolWithTag(context, POOL_TAG_DPC);
return status;
}
/* todo: walk the chain of pointers to prevent jmp chaining */
STATIC
VOID
ValidateTableDispatchRoutines(
_In_ PVOID* Base,
_In_ UINT32 Entries,
_In_ PSYSTEM_MODULES Modules,
_Out_ PVOID* Routine)
{
for (UINT32 index = 0; index < Entries; index++) {
if (!Base[index])
continue;
if (IsInstructionPointerInInvalidRegion(Base[index], Modules))
*Routine = Base[index];
}
}
/*
* windows version info: https://www.techthoughts.info/windows-version-numbers/
*
* sizes:
* https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/HAL_PRIVATE_DISPATCH
*/
#define HAL_PRIVATE_DISPATCH_W11_22H2_SIZE 0x4f0
#define HAL_PRIVATE_DISPATCH_W10_22H2_SIZE 0x4b0
#define WINDOWS_10_MAX_BUILD_NUMBER 19045
STATIC
UINT32
GetHalPrivateDispatchTableRoutineCount(_In_ PRTL_OSVERSIONINFOW VersionInfo)
{
if (VersionInfo->dwBuildNumber <= WINDOWS_10_MAX_BUILD_NUMBER)
return (HAL_PRIVATE_DISPATCH_W10_22H2_SIZE / sizeof(UINT64)) - 1;
else
return (HAL_PRIVATE_DISPATCH_W11_22H2_SIZE / sizeof(UINT64)) - 1;
}
STATIC
NTSTATUS
ValidateHalPrivateDispatchTable(
_Out_ PVOID* Routine, _In_ PSYSTEM_MODULES Modules)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
PVOID table = NULL;
UNICODE_STRING string = RTL_CONSTANT_STRING(L"HalPrivateDispatchTable");
PVOID* base = NULL;
RTL_OSVERSIONINFOW os_info = {0};
UINT32 count = 0;
DEBUG_VERBOSE("Validating HalPrivateDispatchTable.");
table = ImpMmGetSystemRoutineAddress(&string);
if (!table)
return status;
status = GetOsVersionInformation(&os_info);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetOsVersionInformation failed with status %x", status);
return status;
}
base = (UINT64)table + sizeof(UINT64);
count = GetHalPrivateDispatchTableRoutineCount(&os_info);
ValidateTableDispatchRoutines(base, count, Modules, Routine);
return status;
}
STATIC
VOID
ValidateHalDispatchTable(_Out_ PVOID* Routine, _In_ PSYSTEM_MODULES Modules)
{
*Routine = NULL;
DEBUG_VERBOSE("Validating HalDispatchTable.");
/*
* Since windows exports all the function pointers inside the
* HalDispatchTable, we may aswell make use of them and validate it this
* way. While it definitely is ugly, it is the safest way to do it.
*
* What if there are 2 invalid routines? hmm.. tink.
*/
if (IsInstructionPointerInInvalidRegion(
HalQuerySystemInformation,
Modules)) {
*Routine = HalQuerySystemInformation;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalSetSystemInformation, Modules)) {
*Routine = HalSetSystemInformation;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalQueryBusSlots, Modules)) {
*Routine = HalQueryBusSlots;
goto end;
}
if (IsInstructionPointerInInvalidRegion(
HalReferenceHandlerForBus,
Modules)) {
*Routine = HalReferenceHandlerForBus;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalReferenceBusHandler, Modules)) {
*Routine = HalReferenceBusHandler;
goto end;
}
if (IsInstructionPointerInInvalidRegion(
HalDereferenceBusHandler,
Modules)) {
*Routine = HalDereferenceBusHandler;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalInitPnpDriver, Modules)) {
*Routine = HalInitPnpDriver;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalInitPowerManagement, Modules)) {
*Routine = HalInitPowerManagement;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalGetDmaAdapter, Modules)) {
*Routine = HalGetDmaAdapter;
goto end;
}
if (IsInstructionPointerInInvalidRegion(
HalGetInterruptTranslator,
Modules)) {
*Routine = HalGetInterruptTranslator;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalStartMirroring, Modules)) {
*Routine = HalStartMirroring;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalEndMirroring, Modules)) {
*Routine = HalEndMirroring;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalMirrorPhysicalMemory, Modules)) {
*Routine = HalMirrorPhysicalMemory;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalEndOfBoot, Modules)) {
*Routine = HalEndOfBoot;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalMirrorVerify, Modules)) {
*Routine = HalMirrorVerify;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalGetCachedAcpiTable, Modules)) {
*Routine = HalGetCachedAcpiTable;
goto end;
}
if (IsInstructionPointerInInvalidRegion(
HalSetPciErrorHandlerCallback,
Modules)) {
*Routine = HalSetPciErrorHandlerCallback;
goto end;
}
if (IsInstructionPointerInInvalidRegion(HalGetPrmCache, Modules)) {
*Routine = HalGetPrmCache;
goto end;
}
end:
return;
}
STATIC
VOID
ReportDataTableInvalidRoutine(_In_ TABLE_ID TableId, _In_ UINT64 Address)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PDATA_TABLE_ROUTINE_REPORT report = NULL;
len = CryptRequestRequiredBufferLength(sizeof(DATA_TABLE_ROUTINE_REPORT));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!report)
return;
DEBUG_WARNING(
"Invalid data table routine found. Table: %lx, Address: %llx",
TableId,
Address);
INIT_REPORT_PACKET(report, REPORT_DATA_TABLE_ROUTINE, 0);
report->address = Address;
report->table_id = TableId;
report->index = 0;
IntCopyMemory(report->routine, Address, DATA_TABLE_ROUTINE_BUF_SIZE);
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, REPORT_POOL_TAG);
return;
}
IrpQueueSchedulePacket(report, len);
}
NTSTATUS
ValidateHalDispatchTables()
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
SYSTEM_MODULES modules = {0};
PVOID routine1 = NULL;
PVOID routine2 = NULL;
status = GetSystemModuleInformation(&modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetSystemModuleInformation failed with status %x", status);
return status;
}
ValidateHalDispatchTable(&routine1, &modules);
if (routine1)
ReportDataTableInvalidRoutine(HalDispatch, routine1);
else
DEBUG_VERBOSE("HalDispatch dispatch routines are valid.");
status = ValidateHalPrivateDispatchTable(&routine2, &modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"ValidateHalPrivateDispatchTable failed with status %x",
status);
goto end;
}
if (routine2)
ReportDataTableInvalidRoutine(HalPrivateDispatch, routine2);
else
DEBUG_VERBOSE("HalPrivateDispatch dispatch routines are valid.");
end:
if (modules.address)
ImpExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
return status;
}
NTSTATUS
GetDriverObjectByDriverName(
_In_ PUNICODE_STRING DriverName, _Out_ PDRIVER_OBJECT* DriverObject)
{
HANDLE handle = NULL;
OBJECT_ATTRIBUTES attributes = {0};
PVOID dir = {0};
UNICODE_STRING dir_name = {0};
NTSTATUS status = STATUS_UNSUCCESSFUL;
POBJECT_DIRECTORY dir_object = NULL;
POBJECT_DIRECTORY_ENTRY entry = NULL;
POBJECT_DIRECTORY_ENTRY sub_entry = NULL;
PDRIVER_OBJECT driver = NULL;
*DriverObject = NULL;
ImpRtlInitUnicodeString(&dir_name, L"\\Driver");
InitializeObjectAttributes(
&attributes,
&dir_name,
OBJ_CASE_INSENSITIVE,
NULL,
NULL);
status =
ImpZwOpenDirectoryObject(&handle, DIRECTORY_ALL_ACCESS, &attributes);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ZwOpenDirectoryObject failed with status %x", status);
return status;
}
status = ImpObReferenceObjectByHandle(
handle,
DIRECTORY_ALL_ACCESS,
NULL,
KernelMode,
&dir,
NULL);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ObReferenceObjectByHandle failed with status %x", status);
ImpZwClose(handle);
return status;
}
dir_object = (POBJECT_DIRECTORY)dir;
ImpExAcquirePushLockExclusiveEx(&dir_object->Lock, NULL);
for (UINT32 index = 0; index < NUMBER_HASH_BUCKETS; index++) {
entry = dir_object->HashBuckets[index];
if (!entry)
continue;
sub_entry = entry;
while (sub_entry) {
driver = GetObjectFromDirectory(sub_entry);
if (!RtlCompareUnicodeString(
DriverName,
&driver->DriverName,
FALSE)) {
*DriverObject = driver;
goto end;
}
sub_entry = GetNextObject(sub_entry);
}
}
end:
ImpExReleasePushLockExclusiveEx(&dir_object->Lock, 0);
ImpObDereferenceObject(dir);
ImpZwClose(handle);
return STATUS_SUCCESS;
}
PVOID
FindDriverBaseNoApi(_In_ PDRIVER_OBJECT DriverObject, _In_ PWCH Name)
{
PKLDR_DATA_TABLE_ENTRY first = NULL;
PKLDR_DATA_TABLE_ENTRY entry = NULL;
/* first entry contains invalid data, 2nd entry is the kernel */
first = (PKLDR_DATA_TABLE_ENTRY)DriverObject->DriverSection;
entry = ((PKLDR_DATA_TABLE_ENTRY)DriverObject->DriverSection)
->InLoadOrderLinks.Flink->Flink;
while (entry->InLoadOrderLinks.Flink != first) {
/* todo: write our own unicode string comparison function, since
* the entire point of this is to find exports with no exports.
*/
if (!wcscmp(entry->BaseDllName.Buffer, Name)) {
return entry->DllBase;
}
entry = entry->InLoadOrderLinks.Flink;
}
return NULL;
}
VOID
ValidateDispatchTableRoutines(_In_ PVOID* Table, _In_ UINT32 Entries)
{
}
PRTL_MODULE_EXTENDED_INFO
FindModuleByName(_In_ PSYSTEM_MODULES Modules, _In_ PCHAR ModuleName)
{
for (UINT32 index = 0; index < Modules->module_count; index++) {
PRTL_MODULE_EXTENDED_INFO entry =
&((PRTL_MODULE_EXTENDED_INFO)(Modules->address))[index];
if (IntFindSubstring(entry->FullPathName, ModuleName))
return entry;
}
return NULL;
}
#define KERNEL_LOW_ADDRESS 0xFFFF000000000000
#define KERNEL_HIGH_ADDRESS 0xFFFFFFFFFFFFFFFF
BOOLEAN
IsValidKernelAddress(_In_ UINT64 Address)
{
if (!(Address >= KERNEL_LOW_ADDRESS && Address <= KERNEL_HIGH_ADDRESS))
return FALSE;
if (!MmIsAddressValid(Address))
return FALSE;
return TRUE;
}
/*
* Follows a chain of valid pointers until a pointer is no longer present in the
* chain, and returns the final pointer. Assumes the argument "Start" contains a
* valid pointer at its address.
*
* The try catch here is also useless. We can work on making this more secure
* later.
*/
PVOID
FindChainedPointerEnding(_In_ PVOID* Start)
{
PVOID* current = *Start;
PVOID prev = Start;
while (IsValidKernelAddress(current)) {
__try {
prev = current;
current = *current;
}
__except (EXCEPTION_EXECUTE_HANDLER) {
return prev;
}
}
return prev;
}
#define WIN32KBASE_DXGKRNL_INTERFACE_FUNC_COUNT 98
// clang-format off
/*
* ffffa135`fa847828 fffff805`5c7ccf60
* ffffa135`fa847828 fffff805`5c7ccf60 dxgkrnl!DXG_GUEST_COMPOSITIONOBJECTCHANNEL::ChannelStarted
* ffffa135`fa847830 fffff805`5c7ccf60 dxgkrnl!DXG_GUEST_COMPOSITIONOBJECTCHANNEL::ChannelStarted
* ffffa135`fa847838 fffff805`5c7e4ca0 dxgkrnl!DxgkProcessCallout
* ffffa135`fa847840 fffff805`5c7b2580 dxgkrnl!DxgkNotifyProcessFreezeCallout
* ffffa135`fa847848 fffff805`5c7b2430 dxgkrnl!DxgkNotifyProcessThawCallout
* ffffa135`fa847850 fffff805`5c7daf30 dxgkrnl!DxgkOpenAdapter
* ffffa135`fa847858 fffff805`5c7ff6e0 dxgkrnl!DxgkEnumAdapters2Impl
* ffffa135`fa847860 fffff805`5c839f00 dxgkrnl!DxgkGetMaximumAdapterCount
* ffffa135`fa847868 fffff805`5c7e37c0 dxgkrnl!DxgkCloseAdapterImpl
* ffffa135`fa847870 fffff805`5c7b3970 dxgkrnl!DxgkDestroyDevice
* ffffa135`fa847878 fffff805`5c7c8370 dxgkrnl!DxgkEscape
* ffffa135`fa847880 fffff805`5c7c58d0 dxgkrnl!DxgkGetPresentHistoryInternal
* ffffa135`fa847888 fffff805`5c9569a0 dxgkrnl!DxgkReleaseProcessVidPnSourceOwners
* ffffa135`fa847890 fffff805`5c8f4de0 dxgkrnl!DxgkPollDisplayChildrenInternal
* ffffa135`fa847898 fffff805`5c837390 dxgkrnl!DxgkFlushPresentHistory
* ffffa135`fa8478a0 fffff805`5c802e00 dxgkrnl!DxgkGetPathsModality
* ffffa135`fa8478a8 fffff805`5c82e7c0 dxgkrnl!DxgkFunctionalizePathsModality
* ffffa135`fa8478b0 fffff805`5c82e6d0 dxgkrnl!DxgkApplyPathsModality
* ffffa135`fa8478b8 fffff805`5c819740 dxgkrnl!DxgkFinalizePathsModality
* ffffa135`fa8478c0 fffff805`5c7b01c0 dxgkrnl!DxgkPersistPathsModality
* ffffa135`fa8478c8 fffff805`5c839d80 dxgkrnl!DxgkFreePathsModality
* ffffa135`fa8478d0 fffff805`5c816870 dxgkrnl!DxgkAugmentCdsj
* ffffa135`fa8478d8 fffff805`5c821270 dxgkrnl!DxgkGetPresentHistoryReadyEvent
* ffffa135`fa8478e0 fffff805`5c806eb0 dxgkrnl!DxgkGetDisplayConfigBufferSizes
* ffffa135`fa8478e8 fffff805`5c8070e0 dxgkrnl!DxgkQueryDisplayConfig
* ffffa135`fa8478f0 fffff805`5c9677d0 dxgkrnl!DxgkHandleForceProjectionMonitor
* ffffa135`fa8478f8 fffff805`5c838f10 dxgkrnl!DxgkUpdateCddDevmodeExtraData
* ffffa135`fa847900 fffff805`5c967ca0 dxgkrnl!DxgkProcessDisplayCalloutBatch
* ffffa135`fa847908 fffff805`5c7f8880 dxgkrnl!DxgkDisplayConfigDeviceInfo
* ffffa135`fa847910 fffff805`5c7e11f0 dxgkrnl!DxgkGetAdapterDeviceDesc
* ffffa135`fa847918 fffff805`5c7e9200 dxgkrnl!DxgkGetMonitorInternalInfo
* ffffa135`fa847920 fffff805`5c82a4f0 dxgkrnl!DxgkBeginTopologyTransition
* ffffa135`fa847928 fffff805`5c829f50 dxgkrnl!DxgkCompleteTopologyTransition
* ffffa135`fa847930 fffff805`5c8f4130 dxgkrnl!DxgkNeedToEnableCddPrimary
* ffffa135`fa847938 fffff805`5c82a090 dxgkrnl!DxgkInvalidateMonitorConnections
* ffffa135`fa847940 fffff805`5c807340 dxgkrnl!DxgkWriteDiagEntry
* ffffa135`fa847948 fffff805`5c815800 dxgkrnl!DxgkGetAdapterDefaultScaling
* ffffa135`fa847950 fffff805`5c816240 dxgkrnl!DxgkConvertDisplayConfigCScalingToDdiScaling
* ffffa135`fa847958 fffff805`5c8397e0 dxgkrnl!DxgkGetGlobalRawmodeFlag
* ffffa135`fa847960 fffff805`5c967e70 dxgkrnl!DxgkSetGlobalRawmodeFlag
* ffffa135`fa847968 fffff805`5c839530 dxgkrnl!DxgkQueryModeListCacheLuid
* ffffa135`fa847970 fffff805`5c826ff0 dxgkrnl!DxgkThreadCallout
* ffffa135`fa847978 fffff805`5c829c40 dxgkrnl!DxgkSessionConnected
* ffffa135`fa847980 fffff805`5c829a60 dxgkrnl!DxgkPreSessionDisconnected
* ffffa135`fa847988 fffff805`5c829b90 dxgkrnl!DxgkSessionDisconnected
* ffffa135`fa847990 fffff805`5c844420 dxgkrnl!DxgkSessionReconnected
* ffffa135`fa847998 fffff805`5c8440f0 dxgkrnl!DxgkGetAdapter
* ffffa135`fa8479a0 fffff805`5c844290 dxgkrnl!DxgkReleaseAdapter
* ffffa135`fa8479a8 fffff805`5c82c200 dxgkrnl!DxgkDesktopSwitch
* ffffa135`fa8479b0 fffff805`5c811860 dxgkrnl!DxgkStatusChangeNotify
* ffffa135`fa8479b8 fffff805`5c928fd0 dxgkrnl!DxgkEnableUnorderedWaitsForDevice
* ffffa135`fa8479c0 fffff805`5c839670 dxgkrnl!DxgkCddVerifyCddDevMode
* ffffa135`fa8479c8 fffff805`5c93bf30 dxgkrnl!DxgkIsVidPnSourceOwnerDwm
* ffffa135`fa8479d0 fffff805`5c8377a0 dxgkrnl!DxgkIsVidPnSourceOwnerExclusive
* ffffa135`fa8479d8 fffff805`5c7f8720 dxgkrnl!DxgkGetMonitorDeviceObject
* ffffa135`fa8479e0 fffff805`5c831680 dxgkrnl!DxgkRegisterDwmProcess
* ffffa135`fa8479e8 fffff805`5c8fa0a0 dxgkrnl!DxgkGetSharedResourceAdapterLuid
* ffffa135`fa8479f0 fffff805`5c8e7590 dxgkrnl!DxgkNotifyMonitorDimming
* ffffa135`fa8479f8 fffff805`5c820d10 dxgkrnl!DxgkGetSharedAllocationObjectType
* ffffa135`fa847a00 fffff805`5c820d20 dxgkrnl!DxgkGetSharedSyncObjectType
* ffffa135`fa847a08 fffff805`5c83b1b0 dxgkrnl!DxgkGetDisplayManagerObjectType
* ffffa135`fa847a10 fffff805`5c93be10 dxgkrnl!DxgkGetProcessInterferenceCount
* ffffa135`fa847a18 fffff805`5c839cd0 dxgkrnl!DxgkGetGpuUsageStatistics
* ffffa135`fa847a20 fffff805`5c815320 dxgkrnl!DxgkUpdateGdiInfo
* ffffa135`fa847a28 fffff805`5c8393d0 dxgkrnl!DxgkSetPresenterViewMode
* ffffa135`fa847a30 fffff805`5c836930 dxgkrnl!DxgkGetPresenterViewMode
* ffffa135`fa847a38 fffff805`5c827820 dxgkrnl!DxgkSetProcessStatus
* ffffa135`fa847a40 fffff805`5c7fa180 dxgkrnl!DxgkConvertLegacyQDCAdapterAndIdToActual
* ffffa135`fa847a48 fffff805`5c81b510 dxgkrnl!DxgkDisplayOnOff
* ffffa135`fa847a50 fffff805`5c815c30 dxgkrnl!DxgkIsVirtualizationDisabledForTarget
* ffffa135`fa847a58 fffff805`5c8378f0 dxgkrnl!DxgkIsSourceInHardwareClone
* ffffa135`fa847a60 fffff805`5c96d7d0 dxgkrnl!DxgkProcessLockScreen
* ffffa135`fa847a68 fffff805`5c964bd0 dxgkrnl!DxgkCopyPathsModality
* ffffa135`fa847a70 fffff805`5c964b30 dxgkrnl!DxgkApplyCdsjToPathsModality
* ffffa135`fa847a78 fffff805`5c979410 dxgkrnl!DxgkUpdateDpiInfoForNewOverride
* ffffa135`fa847a80 fffff805`5c839a00 dxgkrnl!DxgkInitializeDpi
* ffffa135`fa847a88 fffff805`5c839930 dxgkrnl!DxgkGetDpiOverrideForSource
* ffffa135`fa847a90 fffff805`5c980420 dxgkrnl!DxgkGetLegacyDpiInfo
* ffffa135`fa847a98 fffff805`5c94e0e0 dxgkrnl!DxgkWin32kSetPointerPosition
* ffffa135`fa847aa0 fffff805`5c94e240 dxgkrnl!DxgkWin32kSetPointerShape
* ffffa135`fa847aa8 fffff805`5c844730 dxgkrnl!DxgkGetUseHWGPUInRemoteSession
* ffffa135`fa847ab0 fffff805`5c945520 dxgkrnl!DxgkLPMDisplayControl
* ffffa135`fa847ab8 fffff805`5c945470 dxgkrnl!DxgkEnableHighPrecisionBrightness
* ffffa135`fa847ac0 fffff805`5c945640 dxgkrnl!DxgkSetHighPrecisionBrightness
* ffffa135`fa847ac8 fffff805`5c844670 dxgkrnl!DxgkChangeD3RequestsState
* ffffa135`fa847ad0 fffff805`5c836b90 dxgkrnl!DxgkGetMonitorEdid
* ffffa135`fa847ad8 fffff805`5c967620 dxgkrnl!DxgkConvertPathsModalityToDisplayConfig
* ffffa135`fa847ae0 fffff805`5c815d40 dxgkrnl!DxgkConvertDisplayConfigToDevMode
* ffffa135`fa847ae8 fffff805`5c7febd0 dxgkrnl!DxgkDDisplayEnumInternal
* ffffa135`fa847af0 fffff805`5c9677a0 dxgkrnl!DxgkGetMonitorDisplayId
* ffffa135`fa847af8 fffff805`5c964c60 dxgkrnl!DxgkEnumerateModesForPathsModality
* ffffa135`fa847b00 fffff805`5c8f0e70 dxgkrnl!DxgCreateLiveDumpWithWdLogs
* ffffa135`fa847b08 fffff805`5c9818d0 dxgkrnl!DxgkDispMgrReferenceObjectByHandle
* ffffa135`fa847b10 fffff805`5c9818b0 dxgkrnl!DxgkDispMgrIsTargetOwned
* ffffa135`fa847b18 fffff805`5c98bb20 dxgkrnl!DxgkCheckDisplayState
* ffffa135`fa847b20 fffff805`5c8363c0 dxgkrnl!DxgkSetKernelDisplayPolicy
* ffffa135`fa847b28 fffff805`5c839720 dxgkrnl!DxgkSendDisplayBrokerMessage
* ffffa135`fa847b30 fffff805`5c96fb30 dxgkrnl!DxgkGetWddmRemoteSessionGdiViewRange
*/
// clang-format on
STATIC
VOID
ReportWin32kBase_DxgInterfaceViolation(
_In_ UINT32 TableIndex, _In_ UINT64 Address)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PDATA_TABLE_ROUTINE_REPORT report = NULL;
len = CryptRequestRequiredBufferLength(sizeof(DATA_TABLE_ROUTINE_REPORT));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!report)
return;
INIT_REPORT_PACKET(report, REPORT_DATA_TABLE_ROUTINE, 0);
report->address = Address;
report->table_id = Win32kBase_gDxgInterface;
report->index = TableIndex;
// todo! report->routine = ??
// todo: maybe get routine by name from index ?
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, REPORT_POOL_TAG);
return;
}
IrpQueueSchedulePacket(report, len);
}
STATIC
NTSTATUS
ValidateWin32kBase_gDxgInterface()
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
SYSTEM_MODULES modules = {0};
PRTL_MODULE_EXTENDED_INFO win32kbase = NULL;
PRTL_MODULE_EXTENDED_INFO dxgkrnl = NULL;
KAPC_STATE apc = {0};
PKPROCESS winlogon = NULL;
PVOID* dxg_interface = NULL;
PVOID entry = NULL;
status = GetSystemModuleInformation(&modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetSystemModuleInformation failed %x", status);
return status;
}
win32kbase = FindModuleByName(&modules, "win32kbase.sys");
if (!win32kbase) {
status = STATUS_UNSUCCESSFUL;
goto end;
}
RtlHashmapEnumerate(GetProcessHashmap(), FindWinLogonProcess, &winlogon);
if (!winlogon) {
status = STATUS_UNSUCCESSFUL;
goto end;
}
KeStackAttachProcess(winlogon, &apc);
dxg_interface = PeFindExportByName(win32kbase->ImageBase, "gDxgkInterface");
if (!dxg_interface) {
status = STATUS_UNSUCCESSFUL;
goto detatch;
}
/* The functions in this table reside in dxgkrnl.sys */
dxgkrnl = FindModuleByName(&modules, "dxgkrnl.sys");
if (!dxgkrnl) {
status = STATUS_UNSUCCESSFUL;
goto detatch;
}
/* first 3 qwords are housekeeping. */
for (UINT32 index = 3; index < WIN32KBASE_DXGKRNL_INTERFACE_FUNC_COUNT + 3;
index++) {
if (!dxg_interface[index])
continue;
entry = FindChainedPointerEnding(dxg_interface[index]);
#if DEBUG
DEBUG_INFO("chain entry test: %p", entry);
DEBUG_INFO("regular entry: %p", dxg_interface[index]);
#endif
if (!IsInstructionPointerInsideSpecifiedModule(entry, dxgkrnl)) {
DEBUG_ERROR("invalid entry!!!");
ReportWin32kBase_DxgInterfaceViolation(index, entry);
}
}
detatch:
KeUnstackDetachProcess(&apc);
end:
if (modules.address)
ExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
return status;
}
/* todo: win32kEngInterface */
NTSTATUS
ValidateWin32kDispatchTables()
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
status = ValidateWin32kBase_gDxgInterface();
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ValidateWin32kBase_gDxgInterface: %x", status);
return status;
}
return status;
}