mirror-ac/driver/integrity.c
2024-08-04 16:30:31 +10:00

2548 lines
No EOL
68 KiB
C
Raw Permalink Blame History

#include "integrity.h"
#include "callbacks.h"
#include "common.h"
#include "crypt.h"
#include "driver.h"
#include "imports.h"
#include "io.h"
#include "lib/stdlib.h"
#include "modules.h"
#include "pe.h"
#include "session.h"
#include "util.h"
#include <bcrypt.h>
#include <devpkey.h>
#include <initguid.h>
// clang-format off
typedef struct _INTEGRITY_CHECK_HEADER {
/* Count of total sections contained within the buffer */
UINT32 section_count;
/* Total size of the buffer */
UINT32 total_size;
} INTEGRITY_CHECK_HEADER, *PINTEGRITY_CHECK_HEADER;
typedef struct _PROCESS_MODULE_INFORMATION {
/* Pointer to the base of the module*/
PVOID module_base;
/* Total size of the module */
SIZE_T module_size;
/* Path to the modules executable image*/
WCHAR module_path[MAX_MODULE_PATH];
} PROCESS_MODULE_INFORMATION, *PPROCESS_MODULE_INFORMATION;
typedef struct _PROCESS_MODULE_VALIDATION_RESULT {
/* Boolean value of whether or not the module image is valid */
UINT32 is_module_valid;
} PROCESS_MODULE_VALIDATION_RESULT, *PPROCESS_MODULE_VALIDATION_RESULT;
typedef struct _VAL_INTEGRITY_HEADER {
/* Header containing information pertaining to the buffer */
INTEGRITY_CHECK_HEADER integrity_check_header;
/* Section header */
IMAGE_SECTION_HEADER section_header;
/* Pointer to the start of the sections image */
CHAR section_base[];
} VAL_INTEGRITY_HEADER, *PVAL_INTEGRITY_HEADER;
STATIC
NTSTATUS
InitiateEptFunctionAddressArrays();
STATIC
NTSTATUS
GetModuleInformationByName(
_Out_ PRTL_MODULE_EXTENDED_INFO ModuleInfo,
_In_ LPCSTR ModuleName);
STATIC
NTSTATUS
StoreModuleExecutableRegionsInBuffer(
_Out_ PVOID* Buffer,
_In_ PVOID ModuleBase,
_In_ SIZE_T ModuleSize,
_Out_ PSIZE_T BytesWritten,
_In_ BOOLEAN IsModulex86
);
STATIC
NTSTATUS
MapDiskImageIntoVirtualAddressSpace(
_Inout_ PHANDLE SectionHandle,
_Out_ PVOID* Section,
_In_ PUNICODE_STRING Path,
_Out_ PSIZE_T Size
);
STATIC
VOID
GetNextSMBIOSStructureInTable(
_Inout_ PSMBIOS_TABLE_HEADER* CurrentStructure
);
STATIC
NTSTATUS
GetStringAtIndexFromSMBIOSTable(
_In_ PSMBIOS_TABLE_HEADER Table,
_In_ UINT32 Index,
_In_ PVOID Buffer,
_In_ SIZE_T BufferSize
);
STATIC
NTSTATUS
GetAverageReadTimeAtRoutine(
_In_ PVOID RoutineAddress,
_Out_ PUINT64 AverageTime
);
STATIC
VOID
HeartbeatDpcRoutine(
_In_ PKDPC Dpc,
_In_opt_ PVOID DeferredContext,
_In_opt_ PVOID SystemArgument1,
_In_opt_ PVOID SystemArgument2
);
// clang-format on
#ifdef ALLOC_PRAGMA
# pragma alloc_text(PAGE, GetDriverImageSize)
# pragma alloc_text(PAGE, GetModuleInformationByName)
# pragma alloc_text(PAGE, StoreModuleExecutableRegionsInBuffer)
# pragma alloc_text(PAGE, MapDiskImageIntoVirtualAddressSpace)
# pragma alloc_text(PAGE, RetrieveInMemoryModuleExecutableSections)
# pragma alloc_text(PAGE, GetNextSMBIOSStructureInTable)
# pragma alloc_text(PAGE, GetStringAtIndexFromSMBIOSTable)
# pragma alloc_text(PAGE, ParseSMBIOSTable)
# pragma alloc_text(PAGE, ValidateProcessLoadedModule)
# pragma alloc_text(PAGE, GetHardDiskDriveSerialNumber)
# pragma alloc_text(PAGE, ScanForSignature)
# pragma alloc_text(PAGE, InitiateEptFunctionAddressArrays)
# pragma alloc_text(PAGE, DetectEptHooksInKeyFunctions)
#endif
/*
* note: this can be put into its own function wihtout an IRP as argument then
* it can be used in both the get driver image ioctl handler and the
* CopyDriverExecvutableRegions func
*/
NTSTATUS
GetDriverImageSize(_Inout_ PIRP Irp)
{
PAGED_CODE();
NT_ASSERT(Irp != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
LPCSTR name = GetDriverName();
SYSTEM_MODULES modules = {0};
PRTL_MODULE_EXTENDED_INFO driver = NULL;
status = GetSystemModuleInformation(&modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetSystemModuleInformation failed with status %x", status);
return status;
}
driver = FindSystemModuleByName(name, &modules);
if (!driver) {
DEBUG_ERROR("FindSystemModuleByName failed with no status code");
ImpExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
return STATUS_NOT_FOUND;
}
status = ValidateIrpOutputBuffer(Irp, sizeof(UINT32));
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ValidateIrpOutputBuffer failed with status %x", status);
goto end;
}
Irp->IoStatus.Information = sizeof(UINT32);
IntCopyMemory(
Irp->AssociatedIrp.SystemBuffer,
&driver->ImageSize,
sizeof(UINT32));
end:
if (modules.address)
ImpExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
return status;
}
STATIC
NTSTATUS
GetModuleInformationByName(
_Out_ PRTL_MODULE_EXTENDED_INFO ModuleInfo, _In_ LPCSTR ModuleName)
{
PAGED_CODE();
NT_ASSERT(ModuleName != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
LPCSTR driver_name = GetDriverName();
SYSTEM_MODULES modules = {0};
PRTL_MODULE_EXTENDED_INFO driver_info = NULL;
status = GetSystemModuleInformation(&modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetSystemModuleInformation failed with status %x", status);
return status;
}
/* TODO: think this remains from testing, we only use this to find our
* driver anyway but should be fixed. */
driver_info = FindSystemModuleByName(driver_name, &modules);
if (!driver_info) {
DEBUG_ERROR("FindSystemModuleByName failed with no status");
ImpExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
return STATUS_NOT_FOUND;
}
ModuleInfo->FileNameOffset = driver_info->FileNameOffset;
ModuleInfo->ImageBase = driver_info->ImageBase;
ModuleInfo->ImageSize = driver_info->ImageSize;
IntCopyMemory(
ModuleInfo->FullPathName,
driver_info->FullPathName,
sizeof(ModuleInfo->FullPathName));
if (modules.address)
ImpExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
return status;
}
#define PE_TYPE_32_BIT 0x10b
FORCEINLINE
STATIC
BOOLEAN
IsSectionExecutable(_In_ PIMAGE_SECTION_HEADER Section)
{
return Section->Characteristics & IMAGE_SCN_MEM_EXECUTE ? TRUE : FALSE;
}
FORCEINLINE
STATIC
BOOLEAN
IsModuleAddressSafe(_In_ PVOID Base, _In_ BOOLEAN x86)
{
return !MmIsAddressValid(Base) && !x86 ? FALSE : TRUE;
}
FORCEINLINE
STATIC
UINT32
GetSectionTotalPacketSize(_In_ PIMAGE_SECTION_HEADER Section)
{
return Section->SizeOfRawData + sizeof(IMAGE_SECTION_HEADER);
}
FORCEINLINE
STATIC
VOID
InitIntegrityCheckHeader(
_Out_ PINTEGRITY_CHECK_HEADER Header,
_In_ UINT32 SectionCount,
_In_ UINT32 TotalSize)
{
Header->section_count = SectionCount;
Header->total_size = TotalSize + sizeof(INTEGRITY_CHECK_HEADER);
}
STATIC
NTSTATUS
StoreModuleExecutableRegionsInBuffer(
_Out_ PVOID* Buffer,
_In_ PVOID ModuleBase,
_In_ SIZE_T ModuleSize,
_Out_ PSIZE_T BytesWritten,
_In_ BOOLEAN IsModulex86)
{
PAGED_CODE();
NT_ASSERT(Buffer != NULL);
NT_ASSERT(ModuleBase != NULL);
NT_ASSERT(BytesWritten != NULL);
UINT32 total_packet_size = 0;
UINT32 num_sections = 0;
UINT32 num_executable_sections = 0;
UINT64 buffer_base = 0;
UINT32 bytes_returned = 0;
NTSTATUS status = STATUS_UNSUCCESSFUL;
PNT_HEADER_64 nt_header = NULL;
PIMAGE_SECTION_HEADER section = NULL;
MM_COPY_ADDRESS address = {0};
INTEGRITY_CHECK_HEADER header = {0};
if (!ModuleBase || !ModuleSize)
return STATUS_INVALID_PARAMETER;
if (!IsModuleAddressSafe(ModuleBase, IsModulex86))
return STATUS_UNSUCCESSFUL;
/*
* The reason we allocate a buffer to temporarily hold the section data
* is that we don't know the total size until after we iterate over the
* sections meaning we cant set Irp->IoStatus.Information to the size of
* our reponse until we enumerate and count all executable sections for
* the file.
*/
*BytesWritten = 0;
*Buffer = ImpExAllocatePool2(
POOL_FLAG_NON_PAGED,
ModuleSize + sizeof(INTEGRITY_CHECK_HEADER),
POOL_TAG_INTEGRITY);
if (*Buffer == NULL)
return STATUS_MEMORY_NOT_ALLOCATED;
/* For context, when we are hashing x86 modules, MmIsAddressValid will
* return FALSE. Yet we still need protection for when an invalid address is
* passed for a non-x86 based image.*/
/*
* The IMAGE_DOS_HEADER.e_lfanew stores the offset of the
* IMAGE_NT_HEADER from the base of the image.
*/
nt_header = PeGetNtHeader(ModuleBase);
num_sections = GetSectionCount(nt_header);
/*
* The IMAGE_FIRST_SECTION macro takes in an IMAGE_NT_HEADER and returns
* the address of the first section of the PE file.
*/
section = IMAGE_FIRST_SECTION(nt_header);
buffer_base = (UINT64)*Buffer + sizeof(INTEGRITY_CHECK_HEADER);
for (UINT32 index = 0; index < num_sections - 1; index++) {
if (!IsSectionExecutable(section)) {
section++;
continue;
}
address.VirtualAddress = section;
status = ImpMmCopyMemory(
(UINT64)buffer_base + total_packet_size,
address,
sizeof(IMAGE_SECTION_HEADER),
MM_COPY_MEMORY_VIRTUAL,
&bytes_returned);
if (!NT_SUCCESS(status)) {
ImpExFreePoolWithTag(*Buffer, POOL_TAG_INTEGRITY);
*Buffer = NULL;
return status;
}
address.VirtualAddress = (UINT64)ModuleBase + section->PointerToRawData;
status = ImpMmCopyMemory(
(UINT64)buffer_base + total_packet_size +
sizeof(IMAGE_SECTION_HEADER),
address,
section->SizeOfRawData,
MM_COPY_MEMORY_VIRTUAL,
&bytes_returned);
if (!NT_SUCCESS(status)) {
ImpExFreePoolWithTag(*Buffer, POOL_TAG_INTEGRITY);
*Buffer = NULL;
return status;
}
total_packet_size += GetSectionTotalPacketSize(section);
num_executable_sections++;
section++;
}
InitIntegrityCheckHeader(
&header,
num_executable_sections,
total_packet_size);
IntCopyMemory(*Buffer, &header, sizeof(INTEGRITY_CHECK_HEADER));
*BytesWritten = total_packet_size + sizeof(INTEGRITY_CHECK_HEADER);
return status;
}
STATIC
NTSTATUS
MapDiskImageIntoVirtualAddressSpace(
_Inout_ PHANDLE SectionHandle,
_Out_ PVOID* Section,
_In_ PUNICODE_STRING Path,
_Out_ PSIZE_T Size)
{
PAGED_CODE();
NT_ASSERT(SectionHandle != NULL);
NT_ASSERT(Section != NULL);
NT_ASSERT(Path != NULL);
NT_ASSERT(Size != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
HANDLE handle = NULL;
OBJECT_ATTRIBUTES oa = {0};
PIO_STATUS_BLOCK io = NULL;
UNICODE_STRING path = {0};
*Section = NULL;
*Size = 0;
ImpRtlInitUnicodeString(&path, Path->Buffer);
InitializeObjectAttributes(&oa, &path, OBJ_KERNEL_HANDLE, NULL, NULL);
status = ImpZwOpenFile(&handle, GENERIC_READ, &oa, &io, NULL, NULL);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ZwOpenFile failed with status %x", status);
return status;
}
oa.ObjectName = NULL;
/*
* Its important that we set the SEC_IMAGE flag with the PAGE_READONLY
* flag as we are mapping an executable image.
*/
status = ImpZwCreateSection(
SectionHandle,
SECTION_ALL_ACCESS,
&oa,
NULL,
PAGE_READONLY,
SEC_IMAGE,
handle);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ZwCreateSection failed with status %x", status);
ImpZwClose(handle);
*SectionHandle = NULL;
return status;
}
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ObReferenceObjectByHandle failed with status %x", status);
return status;
}
/*
* Mapping a section with the flag SEC_IMAGE (see function above) tells
* the os we are mapping an executable image. This then allows the OS to
* take care of parsing the PE header and dealing with all relocations
* for us, meaning the mapped image will be identical to the in memory
* image.
*/
status = ImpZwMapViewOfSection(
*SectionHandle,
ZwCurrentProcess(),
Section,
NULL,
NULL,
NULL,
Size,
ViewUnmap,
MEM_TOP_DOWN,
PAGE_READONLY);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ZwMapViewOfSection failed with status %x", status);
ImpZwClose(handle);
ImpZwClose(*SectionHandle);
*SectionHandle = NULL;
return status;
}
ImpZwClose(handle);
return status;
}
NTSTATUS
RetrieveInMemoryModuleExecutableSections(_Inout_ PIRP Irp)
{
PAGED_CODE();
NT_ASSERT(Irp != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
SIZE_T bytes_written = NULL;
PVOID buffer = NULL;
RTL_MODULE_EXTENDED_INFO module_info = {0};
LPCSTR driver_name = GetDriverName();
status = GetModuleInformationByName(&module_info, driver_name);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetModuleInformationByName failed with status %x", status);
return status;
}
status = StoreModuleExecutableRegionsInBuffer(
&buffer,
module_info.ImageBase,
module_info.ImageSize,
&bytes_written,
FALSE);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"StoreModuleExecutableRegionsInBuffe failed with status %x",
status);
return status;
}
status = ValidateIrpOutputBuffer(Irp, bytes_written);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ValidateIrpOutputBuffer failed with status %x", status);
goto end;
}
Irp->IoStatus.Information = bytes_written;
IntCopyMemory(Irp->AssociatedIrp.SystemBuffer, buffer, bytes_written);
end:
if (buffer)
ImpExFreePoolWithTag(buffer, POOL_TAG_INTEGRITY);
return status;
}
#define SMBIOS_TABLE 'RSMB'
#define NULL_TERMINATOR '\0'
/*
* From line 727 in the SMBIOS Specification:
*
* 727 <20> Each structure shall be terminated by a double-null (0000h), either
* directly following the 728 formatted area (if no strings are present) or
* directly following the last string. This includes 729 system- and
* OEM-specific structures and allows upper-level software to easily traverse
* the 730 structure table. (See structure-termination examples later in this
* clause.)
*
* TLDR is that if the first two characters proceeding the structure are null
* terminators, then there are no strings, otherwise to find the end of the
* string section simply iterate until there is a double null terminator.
*
* source:
* https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_2.7.1.pdf
*/
STATIC
VOID
GetNextSMBIOSStructureInTable(_Inout_ PSMBIOS_TABLE_HEADER* CurrentStructure)
{
PAGED_CODE();
NT_ASSERT(CurrentStructure != NULL);
PCHAR string_section_start = NULL;
PCHAR current_char_in_strings = NULL;
PCHAR next_char_in_strings = NULL;
string_section_start =
(PCHAR)((UINT64)*CurrentStructure + (*CurrentStructure)->Length);
current_char_in_strings = string_section_start;
next_char_in_strings = string_section_start + 1;
for (;;) {
if (*current_char_in_strings == NULL_TERMINATOR &&
*next_char_in_strings == NULL_TERMINATOR) {
*CurrentStructure =
(PSMBIOS_TABLE_HEADER)(next_char_in_strings + 1);
return;
}
current_char_in_strings++;
next_char_in_strings++;
}
}
/*
* Remember that the string index does not start from the beginning of the
* struct. For example, lets take RAW_SMBIOS_TABLE_02: the first string is NOT
* "Type" at index 0, the first string is Manufacturer. So if we want to find
* the SerialNumber, the string index would be 4, as the previous 3 values
* (after the header) are all strings. So remember, the index is into the number
* of strings that exist for the given table, NOT the size of the structure or a
* values index into the struct.
*
* Here we count the number of strings by incrementing the string_count each
* time we pass a null terminator so we know when we're at the beginning of the
* target string.
*/
STATIC
NTSTATUS
GetStringAtIndexFromSMBIOSTable(
_In_ PSMBIOS_TABLE_HEADER Table,
_In_ UINT32 Index,
_In_ PVOID Buffer,
_In_ SIZE_T BufferSize)
{
PAGED_CODE();
NT_ASSERT(Table != NULL);
NT_ASSERT(Buffer != NULL);
UINT32 current_string_char_index = 0;
UINT32 string_count = 0;
PCHAR current_string_char = (PCHAR)((UINT64)Table + Table->Length);
PCHAR next_string_char = current_string_char + 1;
UINT64 dest = 0;
for (;;) {
if (*current_string_char == NULL_TERMINATOR &&
*next_string_char == NULL_TERMINATOR)
return STATUS_NOT_FOUND;
if (current_string_char_index >= BufferSize)
return STATUS_BUFFER_TOO_SMALL;
if (string_count + 1 == Index) {
if (*current_string_char == NULL_TERMINATOR)
return STATUS_SUCCESS;
dest = (UINT64)Buffer + current_string_char_index;
IntCopyMemory(dest, current_string_char, sizeof(CHAR));
current_string_char_index++;
goto increment;
}
if (*current_string_char == NULL_TERMINATOR) {
current_string_char_index = 0;
string_count++;
}
increment:
current_string_char++;
next_string_char++;
}
return STATUS_NOT_FOUND;
}
FORCEINLINE
STATIC
PRAW_SMBIOS_DATA
GetRawSmbiosData(_In_ PVOID FirmwareTable)
{
return (PRAW_SMBIOS_DATA)FirmwareTable;
}
FORCEINLINE
STATIC
PSMBIOS_TABLE_HEADER
GetSmbiosTableHeader(_In_ PRAW_SMBIOS_DATA Data)
{
return (PSMBIOS_TABLE_HEADER)(&Data->SMBIOSTableData[0]);
}
NTSTATUS
ParseSMBIOSTable(
_Out_ PVOID Buffer,
_In_ SIZE_T BufferSize,
_In_ SMBIOS_TABLE_INDEX TableIndex,
_In_ ULONG TableSubIndex)
{
PAGED_CODE();
NT_ASSERT(Buffer != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
PVOID buffer = NULL;
ULONG buffer_size = 0;
ULONG bytes_copied = 0;
PRAW_SMBIOS_DATA smbios_data = NULL;
PSMBIOS_TABLE_HEADER header = NULL;
PRAW_SMBIOS_TABLE_01 baseboard = NULL;
status =
ImpExGetSystemFirmwareTable(SMBIOS_TABLE, 0, NULL, 0, &buffer_size);
/*
* Because we pass a null buffer here, the NTSTATUS result will be a
* BUFFER_TOO_SMALL error, so to validate this function call we check
* the return bytes returned (which indicate required buffer size) is
* above 0.
*/
if (buffer_size == NULL) {
DEBUG_ERROR(
"ExGetSystemFirmwareTable call 1 failed to get required buffer size.");
return STATUS_BUFFER_TOO_SMALL;
}
buffer = ImpExAllocatePool2(
POOL_FLAG_NON_PAGED,
buffer_size,
POOL_TAG_INTEGRITY);
if (!buffer)
return STATUS_MEMORY_NOT_ALLOCATED;
status = ImpExGetSystemFirmwareTable(
SMBIOS_TABLE,
NULL,
buffer,
buffer_size,
&bytes_copied);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"ExGetSystemFirmwareTable call 2 failed with status %x",
status);
goto end;
}
smbios_data = GetRawSmbiosData(buffer);
header = GetSmbiosTableHeader(smbios_data);
/*
* The System Information table is equal to Type == 2 and contains the
* serial number of the motherboard in the computer among various other
* things.
*
* source:
* https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_2.7.1.pdf
* line 823
*/
while (header->Type != TableIndex)
GetNextSMBIOSStructureInTable(&header);
status = GetStringAtIndexFromSMBIOSTable(
header,
TableSubIndex,
Buffer,
BufferSize);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"GetStringAtIndexFromSMBIOSTable failed with status %x",
status);
goto end;
}
end:
if (buffer)
ImpExFreePoolWithTag(buffer, POOL_TAG_INTEGRITY);
return status;
}
STATIC
NTSTATUS
ComputeHashOfSections(
_In_ PIMAGE_SECTION_HEADER DiskSection,
_In_ PIMAGE_SECTION_HEADER MemorySection,
_Out_ PVOID* DiskHash,
_Out_ PULONG DiskHashSize,
_Out_ PVOID* MemoryHash,
_Out_ PULONG MemoryHashSize)
{
NT_ASSERT(DiskSection != NULL);
NT_ASSERT(MemorySection != NULL);
NT_ASSERT(DiskHash != NULL);
NT_ASSERT(DiskHashSize != NULL);
NT_ASSERT(MemoryHash != NULL);
NT_ASSERT(MemoryHashSize != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
if (DiskSection->SizeOfRawData != MemorySection->SizeOfRawData) {
DEBUG_WARNING("Executable section sizes differ between images.");
return STATUS_INVALID_BUFFER_SIZE;
}
status = CryptHashBuffer_sha256(
(UINT64)DiskSection + sizeof(IMAGE_SECTION_HEADER),
DiskSection->SizeOfRawData,
DiskHash,
DiskHashSize);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptHashBuffer_sha256 failed with status %x", status);
return status;
}
status = CryptHashBuffer_sha256(
(UINT64)MemorySection + sizeof(IMAGE_SECTION_HEADER),
MemorySection->SizeOfRawData,
MemoryHash,
MemoryHashSize);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptHashBuffer_sha256 2 failed with status %x", status);
return status;
}
return status;
}
FORCEINLINE
STATIC
BOOLEAN
CompareHashes(_In_ PVOID Hash1, _In_ PVOID Hash2, _In_ UINT32 Length)
{
return IntCompareMemory(Hash1, Hash2, Length) == Length ? TRUE : FALSE;
}
STATIC
VOID
ReportInvalidProcessModule(_In_ PPROCESS_MODULE_INFORMATION Module)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PPROCESS_MODULE_VALIDATION_REPORT report = NULL;
len = CryptRequestRequiredBufferLength(
sizeof(PROCESS_MODULE_VALIDATION_REPORT));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!report)
return;
INIT_REPORT_PACKET(report, REPORT_INVALID_PROCESS_MODULE, 0);
report->image_base = Module->module_base;
report->image_size = Module->module_size;
IntCopyMemory(
report->module_path,
Module->module_path,
sizeof(report->module_path));
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, len);
return;
}
IrpQueueSchedulePacket(report, len);
}
/*
* Because the infrastructure has already been setup to validate modules in the
* driver, that is how I will validate the usermode modules as well. Another
* reason is that the win32 api makes it very easy to take a snapshot of the
* modules and enumerate them with easy to use functions and macros.
*
* 1. Take a snapshot of the modules in the process from our dll
* 2. pass the image base, image size and the image path to our driver via an
* IRP
* 3. from our driver, to first verify the in memory module, attach to our
* protected process and using the base + size simply use
* StoreModuleExecutableRegionsInBuffer()
* 4. Next we use the path to map the image on disk into memory, and pass the
* image to StoreModuleExecutableRegionsInBuffer() just as we did before.
* 5. With the 2 buffers that contain both images executable regions, we hash
* them and compare for anomalies.
*
* note: Its important to realise that since these are user mode modules, they
* are often hooked by various legitimate programs - such as discord, nvidia
* etc. So this needs to be rethinked.
*/
NTSTATUS
ValidateProcessLoadedModule(_Inout_ PIRP Irp)
{
PAGED_CODE();
NT_ASSERT(Irp != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
PROCESS_MODULE_VALIDATION_RESULT validation_result = {0};
PPROCESS_MODULE_INFORMATION module_info = NULL;
PKPROCESS process = NULL;
KAPC_STATE apc_state = {0};
PVAL_INTEGRITY_HEADER memory_buffer = NULL;
PVAL_INTEGRITY_HEADER disk_buffer = NULL;
PVOID memory_hash = NULL;
PVOID disk_hash = NULL;
ULONG memory_hash_size = 0;
ULONG disk_hash_size = 0;
SIZE_T bytes_written = 0;
UNICODE_STRING module_path = {0};
HANDLE section_handle = NULL;
PVOID section = NULL;
ULONG section_size = 0;
status = ValidateIrpInputBuffer(Irp, sizeof(PROCESS_MODULE_INFORMATION));
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ValidateIrpInputBuffer failed with status %x", status);
return status;
}
module_info = (PPROCESS_MODULE_INFORMATION)Irp->AssociatedIrp.SystemBuffer;
SessionGetProcess(&process);
ImpRtlInitUnicodeString(&module_path, &module_info->module_path);
/*
* Attach because the offsets given are from the process' context.
*/
ImpKeStackAttachProcess(process, &apc_state);
status = StoreModuleExecutableRegionsInBuffer(
&memory_buffer,
module_info->module_base,
module_info->module_size,
&bytes_written,
FALSE);
ImpKeUnstackDetachProcess(&apc_state);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"StoreModuleExecutableRegionsInBuffer failed with status %x",
status);
goto end;
}
status = MapDiskImageIntoVirtualAddressSpace(
&section_handle,
&section,
&module_path,
&section_size);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"MapDiskImageIntoVirtualAddressSpace failed with status %x",
status);
goto end;
}
status = StoreModuleExecutableRegionsInBuffer(
&disk_buffer,
section,
section_size,
&bytes_written,
FALSE);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"StoreModuleExecutableRegionsInbuffer 2 failed with status %x",
status);
goto end;
}
status = ComputeHashOfSections(
&memory_buffer->section_header,
&disk_buffer->section_header,
&disk_hash,
&disk_hash_size,
&memory_hash,
&memory_hash_size);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("ComputeHashOfSections failed with status %x", status);
goto end;
}
if (!CompareHashes(disk_hash, memory_hash, memory_hash_size))
ReportInvalidProcessModule(module_info);
end:
if (section_handle)
ImpZwClose(section_handle);
if (section)
ImpZwUnmapViewOfSection(ZwCurrentProcess(), section);
if (memory_buffer)
ImpExFreePoolWithTag(memory_buffer, POOL_TAG_INTEGRITY);
if (memory_hash)
ImpExFreePoolWithTag(memory_hash, POOL_TAG_INTEGRITY);
if (disk_buffer)
ImpExFreePoolWithTag(disk_buffer, POOL_TAG_INTEGRITY);
if (disk_hash)
ImpExFreePoolWithTag(disk_hash, POOL_TAG_INTEGRITY);
return status;
}
NTSTATUS
HashUserModule(
_In_ PPROCESS_MAP_MODULE_ENTRY Entry,
_Out_ PVOID OutBuffer,
_In_ UINT32 OutBufferSize)
{
PAGED_CODE();
NT_ASSERT(Entry != NULL);
NT_ASSERT(OutBuffer != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
KAPC_STATE apc_state = {0};
PVAL_INTEGRITY_HEADER memory_buffer = NULL;
PVOID memory_hash = NULL;
ULONG memory_hash_size = 0;
SIZE_T bytes_written = 0;
PACTIVE_SESSION session = GetActiveSession();
/*
* Attach because the offsets given are from the process' context.
*/
ImpKeStackAttachProcess(session->process, &apc_state);
status = StoreModuleExecutableRegionsInBuffer(
&memory_buffer,
Entry->base,
Entry->size,
&bytes_written,
FALSE);
ImpKeUnstackDetachProcess(&apc_state);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"StoreModuleExecutableRegionsInBuffer failed with status %x",
status);
goto end;
}
status = CryptHashBuffer_sha256(
memory_buffer->section_base,
memory_buffer->section_header.SizeOfRawData,
&memory_hash,
&memory_hash_size);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptHashBuffer_sha256 failed with status %x", status);
goto end;
}
if (OutBufferSize > memory_hash_size) {
status = STATUS_BUFFER_TOO_SMALL;
goto end;
}
IntCopyMemory(OutBuffer, memory_hash, memory_hash_size);
end:
if (memory_buffer)
ImpExFreePoolWithTag(memory_buffer, POOL_TAG_INTEGRITY);
if (memory_hash)
ImpExFreePoolWithTag(memory_hash, POOL_TAG_INTEGRITY);
return status;
}
FORCEINLINE
STATIC
PCHAR
GetStorageDescriptorSerialNumber(_In_ PSTORAGE_DEVICE_DESCRIPTOR Descriptor)
{
return (PCHAR)((UINT64)Descriptor + Descriptor->SerialNumberOffset);
}
FORCEINLINE
STATIC
SIZE_T
GetStorageDescriptorSerialLength(_In_ PCHAR SerialNumber)
{
return IntStringLength(SerialNumber, DEVICE_DRIVE_0_SERIAL_CODE_LENGTH) + 1;
}
FORCEINLINE
STATIC
VOID
InitStorageProperties(
_Out_ PSTORAGE_PROPERTY_QUERY Query,
_In_ STORAGE_PROPERTY_ID PropertyId,
_In_ STORAGE_QUERY_TYPE QueryType)
{
Query->PropertyId = PropertyId;
Query->QueryType = QueryType;
}
/*
* TODO: Query PhysicalDrive%n to get the serial numbers for all harddrives, can
* use the command "wmic diskdrive" check in console.
*/
NTSTATUS
GetHardDiskDriveSerialNumber(
_Inout_ PVOID ConfigDrive0Serial, _In_ SIZE_T ConfigDrive0MaxSize)
{
PAGED_CODE();
NT_ASSERT(ConfigDrive0Serial != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
HANDLE handle = NULL;
OBJECT_ATTRIBUTES attributes = {0};
IO_STATUS_BLOCK status_block = {0};
STORAGE_PROPERTY_QUERY query = {0};
STORAGE_DESCRIPTOR_HEADER header = {0};
PSTORAGE_DEVICE_DESCRIPTOR descriptor = NULL;
UNICODE_STRING path = {0};
PCHAR serial_number = NULL;
SIZE_T serial_length = 0;
ImpRtlInitUnicodeString(&path, L"\\DosDevices\\PhysicalDrive0");
/*
* No need to use the flag OBJ_FORCE_ACCESS_CHECK since we arent passing
* a handle given to us from usermode.
*/
InitializeObjectAttributes(
&attributes,
&path,
OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
NULL,
NULL);
status = ImpZwOpenFile(
&handle,
GENERIC_READ,
&attributes,
&status_block,
NULL,
NULL);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"ZwOpenFile on PhysicalDrive0 failed with status %x",
status);
goto end;
}
InitStorageProperties(&query, StorageDeviceProperty, PropertyStandardQuery);
status = ImpZwDeviceIoControlFile(
handle,
NULL,
NULL,
NULL,
&status_block,
IOCTL_STORAGE_QUERY_PROPERTY,
&query,
sizeof(STORAGE_PROPERTY_QUERY),
&header,
sizeof(STORAGE_DESCRIPTOR_HEADER));
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"ZwDeviceIoControlFile first call failed with status %x",
status);
goto end;
}
descriptor = ImpExAllocatePool2(
POOL_FLAG_NON_PAGED,
header.Size,
POOL_TAG_INTEGRITY);
if (!descriptor) {
status = STATUS_MEMORY_NOT_ALLOCATED;
goto end;
}
status = ImpZwDeviceIoControlFile(
handle,
NULL,
NULL,
NULL,
&status_block,
IOCTL_STORAGE_QUERY_PROPERTY,
&query,
sizeof(STORAGE_PROPERTY_QUERY),
descriptor,
header.Size);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"ZwDeviceIoControlFile second call failed with status %x",
status);
goto end;
}
if (!descriptor->SerialNumberOffset)
goto end;
serial_number = GetStorageDescriptorSerialNumber(descriptor);
serial_length = GetStorageDescriptorSerialLength(serial_number);
if (serial_length > ConfigDrive0MaxSize) {
status = STATUS_BUFFER_TOO_SMALL;
goto end;
}
IntCopyMemory(ConfigDrive0Serial, serial_number, serial_length);
end:
if (handle)
ImpZwClose(handle);
if (descriptor)
ImpExFreePoolWithTag(descriptor, POOL_TAG_INTEGRITY);
return status;
}
PVOID
ScanForSignature(
_In_ PVOID BaseAddress,
_In_ SIZE_T MaxLength,
_In_ LPCSTR Signature,
_In_ SIZE_T SignatureLength)
{
PAGED_CODE();
NT_ASSERT(BaseAddress != NULL);
NT_ASSERT(Signature != NULL);
CHAR current_char = 0;
CHAR current_sig_char = 0;
for (UINT32 index = 0; index < MaxLength; index++) {
for (UINT32 sig = 0; sig < SignatureLength + 1; sig++) {
current_char = *(PCHAR)((UINT64)BaseAddress + index + sig);
current_sig_char = Signature[sig];
if (sig == SignatureLength)
return (PVOID)((UINT64)BaseAddress + index);
if (current_char != current_sig_char)
break;
}
}
return NULL;
}
/*
* Lets ensure to the compiler doens't optimise out our useless instructions...
*/
#pragma optimize("", off)
STATIC
UINT64
MeasureInstructionRead(_In_ PVOID InstructionAddress)
{
NT_ASSERT(InstructionAddress != NULL);
CONST UINT64 start = __readmsr(IA32_APERF_MSR) << 32;
CHAR value = *(PCHAR)InstructionAddress;
return (__readmsr(IA32_APERF_MSR) << 32) - start;
}
#pragma optimize("", on)
STATIC
UINT64
MeasureReads(_In_ PVOID Address, _In_ ULONG Count)
{
NT_ASSERT(Address != NULL);
NT_ASSERT(Count > 0);
UINT64 read_average = 0;
KIRQL irql = {0};
MeasureInstructionRead(Address);
KeRaiseIrql(HIGH_LEVEL, &irql);
_disable();
for (UINT32 iteration = 0; iteration < Count; iteration++)
read_average += MeasureInstructionRead(Address);
_enable();
KeLowerIrql(irql);
DEBUG_VERBOSE("EPT Detection - Read Average: %llx", read_average);
return read_average / Count;
}
#define EPT_CHECK_NUM_ITERATIONS 30
#define EPT_CONTROL_FUNCTIONS_COUNT 4
#define EPT_PROTECTED_FUNCTIONS_COUNT 2
#define EPT_MAX_FUNCTION_NAME_LENGTH 128
#define EPT_EXECUTION_TIME_MULTIPLIER 10
/*
* Even though we test for the presence of a hypervisor, we should still test
* for the presence of EPT hooks on key functions as this is a primary method
* for reversing AC's.
*
* Credits to momo5502 for the idea: https://momo5502.com/blog/?p=255
*
* [+] EPT: Read average: 14991c28f5c2
* [+] no EPT: Read average: 28828f5c28
*
* On average a read when HyperDbg's !epthook is active is around ~125x longer.
* Will need to continue testing with other HV's, however it is a good start.
*/
STATIC
NTSTATUS
GetAverageReadTimeAtRoutine(
_In_ PVOID RoutineAddress, _Out_ PUINT64 AverageTime)
{
NT_ASSERT(RoutineAddress != NULL);
NT_ASSERT(AverageTime != NULL);
if (!RoutineAddress || !AverageTime)
return STATUS_UNSUCCESSFUL;
if (!MmIsAddressValid(RoutineAddress))
return STATUS_INVALID_ADDRESS;
*AverageTime = MeasureReads(RoutineAddress, EPT_CHECK_NUM_ITERATIONS);
return *AverageTime == 0 ? STATUS_UNSUCCESSFUL : STATUS_SUCCESS;
}
/*
* todo: encrypt both arrays
*
* The goal with the control functions is to find a reference time for an
* average read on a function that is not EPT hooked. To accomplish this I've
* selected some arbitrary, rarely used functions that shouldn't really ever
* have an EPT hook active on them. This will give us a baseline that we can
* then average out to find a relatively accurate average read time.
*
* From here, we have an array of protected functions which are commonly hooked
* via EPT to reverse anti cheats. We then check the read times of these
* functions and compare them to the average of the read times for the control
* functions. If the read threshold exceeds a multiple of 10, we can be fairly
* certain an EPT hook is active.
*
* Each time we measure the read we perform 30 iterations to ensure we get a
* consistent result aswell as disabling interrupts + raising IRQL to ensure the
* test is as accurate as possible.
*
* The following open source Intel VT-X hv's w/ EPT functionality have been
* tested and detected in a non vm environment:
*
* HyperDbg !epthook (https://github.com/HyperDbg/HyperDbg): detected
* DdiMon (https://github.com/tandasat/DdiMon): detected
*/
WCHAR CONTROL_FUNCTIONS[EPT_CONTROL_FUNCTIONS_COUNT]
[EPT_MAX_FUNCTION_NAME_LENGTH] = {
L"RtlAssert",
L"PsAcquireSiloHardReference",
L"PsDereferencePrimaryToken",
L"ZwCommitEnlistment"};
WCHAR PROTECTED_FUNCTIONS[EPT_PROTECTED_FUNCTIONS_COUNT]
[EPT_MAX_FUNCTION_NAME_LENGTH] = {
L"ExAllocatePoolWithTag", L"MmCopyMemory"};
/*
* For whatever reason MmGetSystemRoutineAddress only works once, then every
* call thereafter fails. So will be storing the routine addresses in arrays
* since they dont change once the kernel is loaded.
*/
#pragma section("NonPagedPool", read, write)
__declspec(allocate("NonPagedPool")) UINT64
CONTROL_FUNCTION_ADDRESSES[EPT_CONTROL_FUNCTIONS_COUNT] = {0};
__declspec(allocate("NonPagedPool")) UINT64
PROTECTED_FUNCTION_ADDRESSES[EPT_PROTECTED_FUNCTIONS_COUNT] = {0};
STATIC
NTSTATUS
InitiateEptFunctionAddressArrays()
{
PAGED_CODE();
UNICODE_STRING current_function = {0};
for (UINT32 index = 0; index < EPT_CONTROL_FUNCTIONS_COUNT; index++) {
ImpRtlInitUnicodeString(&current_function, CONTROL_FUNCTIONS[index]);
CONTROL_FUNCTION_ADDRESSES[index] =
ImpMmGetSystemRoutineAddress(&current_function);
NT_ASSERT(CONTROL_FUNCTION_ADDRESSES[index] != NULL);
if (!CONTROL_FUNCTION_ADDRESSES[index])
return STATUS_UNSUCCESSFUL;
}
for (UINT32 index = 0; index < EPT_PROTECTED_FUNCTIONS_COUNT; index++) {
ImpRtlInitUnicodeString(&current_function, PROTECTED_FUNCTIONS[index]);
PROTECTED_FUNCTION_ADDRESSES[index] =
ImpMmGetSystemRoutineAddress(&current_function);
NT_ASSERT(PROTECTED_FUNCTION_ADDRESSES[index] != NULL);
if (!PROTECTED_FUNCTION_ADDRESSES[index])
return STATUS_UNSUCCESSFUL;
}
return STATUS_SUCCESS;
}
STATIC
VOID
ReportEptHook(
_In_ UINT64 ControlAverage,
_In_ UINT64 ReadAverage,
_In_ WCHAR FunctionName)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PEPT_HOOK_REPORT report = NULL;
UNICODE_STRING string = {0};
len = CryptRequestRequiredBufferLength(sizeof(EPT_HOOK_REPORT));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!report)
return;
INIT_REPORT_PACKET(report, REPORT_EPT_HOOK, 0);
report->control_average = ControlAverage;
report->read_average = ReadAverage;
RtlInitUnicodeString(&string, FunctionName);
status = UnicodeToCharBufString(
&string,
report->function_name,
sizeof(report->function_name));
if (!NT_SUCCESS(status))
DEBUG_ERROR("UnicodeToCharBufString: %x", status);
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, len);
return;
}
IrpQueueSchedulePacket(report, len);
}
NTSTATUS
DetectEptHooksInKeyFunctions()
{
PAGED_CODE();
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 control_fails = 0;
UINT64 instruction_time = 0;
UINT64 control_time_sum = 0;
UINT64 control_average = 0;
/* todo: once we call this, we need to set a flag to skip this,
* otherwise we just return early */
status = InitiateEptFunctionAddressArrays();
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"InitiateEptFunctionAddressArrays failed with status %x",
status);
return status;
}
for (UINT32 index = 0; index < EPT_CONTROL_FUNCTIONS_COUNT; index++) {
status = GetAverageReadTimeAtRoutine(
CONTROL_FUNCTION_ADDRESSES[index],
&instruction_time);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"DetectEptPresentOnFunction failed with status %x",
status);
control_fails += 1;
continue;
}
control_time_sum += instruction_time;
}
if (control_time_sum == 0)
return STATUS_UNSUCCESSFUL;
control_average =
control_time_sum / (EPT_CONTROL_FUNCTIONS_COUNT - control_fails);
if (control_average == 0)
return STATUS_UNSUCCESSFUL;
for (UINT32 index = 0; index < EPT_PROTECTED_FUNCTIONS_COUNT; index++) {
status = GetAverageReadTimeAtRoutine(
PROTECTED_FUNCTION_ADDRESSES[index],
&instruction_time);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"DetectEptPresentOnFunction failed with status %x",
status);
continue;
}
/* [+] EPT hook detected at function: ExAllocatePoolWithTag with
* execution time of: 149b7777777 */
if (control_average * EPT_EXECUTION_TIME_MULTIPLIER <
instruction_time) {
DEBUG_WARNING(
"EPT hook detected at function: %llx with execution time of: %llx",
PROTECTED_FUNCTION_ADDRESSES[index],
instruction_time);
ReportEptHook(
control_average,
instruction_time,
PROTECTED_FUNCTION_ADDRESSES[index]);
}
}
return status;
}
VOID
FindWinLogonProcess(_In_ PPROCESS_LIST_ENTRY Node, _In_opt_ PVOID Context)
{
NT_ASSERT(Node != NULL);
NT_ASSERT(Context != NULL);
LPCSTR process_name = NULL;
PEPROCESS* process = (PEPROCESS*)Context;
if (!Context)
return;
process_name = ImpPsGetProcessImageFileName(Node->process);
if (!IntCompareString(process_name, "winlogon.exe"))
*process = Node->process;
}
STATIC
NTSTATUS
StoreModuleExecutableRegionsx86(
_In_ PRTL_MODULE_EXTENDED_INFO Module,
_In_ PVOID* Buffer,
_In_ PULONG BufferSize)
{
NT_ASSERT(Module != NULL);
NT_ASSERT(Buffer != NULL);
NT_ASSERT(BufferSize != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
PEPROCESS process = NULL;
KAPC_STATE apc_state = {0};
RtlHashmapEnumerate(GetProcessHashmap(), FindWinLogonProcess, &process);
if (!process)
return STATUS_NOT_FOUND;
ImpKeStackAttachProcess(process, &apc_state);
status = StoreModuleExecutableRegionsInBuffer(
Buffer,
Module->ImageBase,
Module->ImageSize,
BufferSize,
TRUE);
ImpKeUnstackDetachProcess(&apc_state);
if (!NT_SUCCESS(status))
DEBUG_ERROR(
"StoreModuleExecutableRegionsInBuffer-x86 failed with status %x",
status);
return status;
}
FORCEINLINE
STATIC
VOID
Enablex86Hashing(_In_ PDRIVER_LIST_HEAD Head)
{
Head->can_hash_x86 = TRUE;
}
VOID
DeferredModuleHashingCallback(
_In_ PDEVICE_OBJECT DeviceObject, _In_opt_ PVOID Context)
{
UNREFERENCED_PARAMETER(Context);
UNREFERENCED_PARAMETER(DeviceObject);
NTSTATUS status = STATUS_UNSUCCESSFUL;
RTL_MODULE_EXTENDED_INFO module = {0};
PDRIVER_LIST_HEAD list = GetDriverList();
PLIST_ENTRY head = &GetDriverList()->deferred_list;
PLIST_ENTRY entry = NULL;
PDRIVER_LIST_ENTRY driver = NULL;
Enablex86Hashing(list);
entry = RemoveHeadList(head);
if (entry == head)
goto end;
while (entry != head) {
driver = CONTAINING_RECORD(entry, DRIVER_LIST_ENTRY, deferred_entry);
DriverListEntryToExtendedModuleInfo(driver, &module);
DEBUG_VERBOSE("Hashing Deferred Module: %s", module.FullPathName);
status = HashModule(&module, &driver->text_hash);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("HashModule-x86 failed with status %x", status);
driver->hashed = FALSE;
entry = RemoveHeadList(head);
continue;
}
driver->hashed = TRUE;
entry = RemoveHeadList(head);
}
end:
DEBUG_VERBOSE("All deferred modules hashed.");
ImpIoFreeWorkItem(list->work_item);
list->work_item = NULL;
}
NTSTATUS
HashModule(_In_ PRTL_MODULE_EXTENDED_INFO Module, _Out_ PVOID Hash)
{
NT_ASSERT(Module != NULL);
NT_ASSERT(Hash != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
ANSI_STRING ansi_string = {0};
UNICODE_STRING path = {0};
ULONG memory_text_size = 0;
PVOID memory_hash = NULL;
ULONG memory_hash_size = 0;
PVAL_INTEGRITY_HEADER memory_buffer = NULL;
ULONG memory_buffer_size = 0;
PDRIVER_LIST_HEAD list = GetDriverList();
ImpRtlInitAnsiString(&ansi_string, Module->FullPathName);
if (!ansi_string.Buffer) {
DEBUG_ERROR("RtlInitAnsiString failed with status %x", status);
return STATUS_UNSUCCESSFUL;
}
status = ImpRtlAnsiStringToUnicodeString(&path, &ansi_string, TRUE);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"RtlAnsiStringToUnicodeString failed with status %x",
status);
return status;
}
/*
* For win32k and related modules, because they are 32bit for us to read
* the memory we need to attach to a 32 bit process. A simple check is
* that the 32 bit image base wont be a valid address, while this is
* hacky it works. Then we simply attach to a 32 bit address space, in
* our case winlogon, which will allow us to perform the copy.
*
* Since the driver loads at system startup, our driver is loaded before
* the WinLogon process has started, so to combat this return return
* early with a status code. This will mark the module as not hashed and
* x86. We will then queue a work item to hash these modules later once
* WinLogon has started.
*/
if (!ImpMmIsAddressValid(Module->ImageBase) && !list->can_hash_x86) {
status = STATUS_INVALID_IMAGE_WIN_32;
goto end;
}
else if (!ImpMmIsAddressValid(Module->ImageBase) && list->can_hash_x86) {
/*
* Once the WinLogon process has started, we can then hash new
* x86 modules.
*/
status = StoreModuleExecutableRegionsx86(
Module,
(PVOID)&memory_buffer,
&memory_buffer_size);
}
else {
status = StoreModuleExecutableRegionsInBuffer(
(PVOID)&memory_buffer,
Module->ImageBase,
Module->ImageSize,
&memory_buffer_size,
FALSE);
}
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"StoreModuleExecutableRegionsInbuffer 2 failed with status %x",
status);
goto end;
}
status = CryptHashBuffer_sha256(
memory_buffer->section_base,
memory_buffer->section_header.SizeOfRawData,
&memory_hash,
&memory_hash_size);
if (!NT_SUCCESS(status)) {
DEBUG_VERBOSE("ComputeHashOfSections failed with status %x", status);
goto end;
}
IntCopyMemory(Hash, memory_hash, memory_hash_size);
end:
if (memory_buffer)
ImpExFreePoolWithTag(memory_buffer, POOL_TAG_INTEGRITY);
if (memory_hash)
ImpExFreePoolWithTag(memory_hash, POOL_TAG_INTEGRITY);
if (path.Buffer)
ImpRtlFreeUnicodeString(&path);
return status;
}
/*
* As said in the comment below, in the future we want to be able to copy a
* small part of the spot where the image has changed, say the next 50 bytes.
* This would be useful for scanning for any jmp x etc. For this thisl do.
*/
STATIC
VOID
ReportModifiedSystemImage(_In_ PRTL_MODULE_EXTENDED_INFO Module)
{
NT_ASSERT(Module != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PSYSTEM_MODULE_INTEGRITY_CHECK_REPORT report = NULL;
len = CryptRequestRequiredBufferLength(
sizeof(SYSTEM_MODULE_INTEGRITY_CHECK_REPORT));
report = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!report)
return;
INIT_REPORT_PACKET(report, REPORT_PATCHED_SYSTEM_MODULE, 0);
report->image_base = Module->ImageBase;
report->image_size = Module->ImageSize;
IntCopyMemory(
report->path_name,
Module->FullPathName,
sizeof(report->path_name));
status = CryptEncryptBuffer(report, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(report, len);
return;
}
IrpQueueSchedulePacket(report, len);
}
VOID
ValidateSystemModule(_In_ PRTL_MODULE_EXTENDED_INFO Module)
{
NT_ASSERT(Module != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
PDRIVER_LIST_ENTRY entry = NULL;
PVOID hash = NULL;
hash = ExAllocatePool2(
POOL_FLAG_NON_PAGED,
SHA_256_HASH_LENGTH,
POOL_TAG_INTEGRITY);
if (!hash)
return;
FindDriverEntryByBaseAddress(Module->ImageBase, &entry);
if (!entry) {
DEBUG_ERROR("FindDriverEntryByBaseAddress failed with no status");
goto end;
}
/* For now, there is some issue that sometimes occurs when validing x86
* modules, for now lets skip them.*/
if (entry->x86)
goto end;
/*
* Ideally, we would like to have access to the offset into the module that
* doesnt match, allowing us to copy the next 50 bytes for example. Since we
* only store the hash, we can only check whether something has changed, but
* we dont really have access to any information regarding what changed. In
* the future it might be nice (though requires a fair amount of memory) to
* store a copy of images on load in the list alongside the hash. That way
* if there is a change in the hash, we can access the old buffer, perform a
* memory comparison, and find the point where the change exists.
*/
status = HashModule(Module, hash);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("HashModule failed with status %x", status);
goto end;
}
if (CompareHashes(hash, entry->text_hash, SHA_256_HASH_LENGTH)) {
DEBUG_VERBOSE(
"Module: %s text regions are valid.",
Module->FullPathName);
}
else {
DEBUG_WARNING(
"**!!** Module: %s text regions are NOT valid **!!**",
Module->FullPathName);
ReportModifiedSystemImage(Module);
}
end:
if (hash)
ExFreePoolWithTag(hash, POOL_TAG_INTEGRITY);
}
STATIC
VOID
ReportModifiedSelfDriverImage(_In_ PRTL_MODULE_EXTENDED_INFO Module)
{
NT_ASSERT(Module != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
UINT32 len = 0;
PDRIVER_SELF_INTEGRITY_CHECK_REPORT packet = NULL;
len = CryptRequestRequiredBufferLength(
sizeof(DRIVER_SELF_INTEGRITY_CHECK_REPORT));
packet = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, len, REPORT_POOL_TAG);
if (!packet)
return;
INIT_REPORT_PACKET(packet, REPORT_SELF_DRIVER_PATCHED, 0);
packet->image_base = Module->ImageBase;
packet->image_size = Module->ImageSize;
IntCopyMemory(
packet->path_name,
Module->FullPathName,
sizeof(packet->path_name));
status = CryptEncryptBuffer(packet, len);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(packet, len);
return;
}
IrpQueueSchedulePacket(packet, len);
}
NTSTATUS
ValidateOurDriverImage()
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
SYSTEM_MODULES modules = {0};
PRTL_MODULE_EXTENDED_INFO module_info = NULL;
PVOID memory_hash = NULL;
ULONG memory_hash_size = 0;
PDRIVER_LIST_ENTRY entry = NULL;
LPCSTR driver_name = GetDriverName();
PUNICODE_STRING path = GetDriverPath();
status = GetSystemModuleInformation(&modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetSystemModuleInformation failed with status %x", status);
return status;
}
module_info = FindSystemModuleByName(driver_name, &modules);
if (!module_info) {
DEBUG_ERROR("FindSystemModuleByName failed with no status.");
goto end;
}
memory_hash = ExAllocatePool2(
POOL_FLAG_NON_PAGED,
SHA_256_HASH_LENGTH,
POOL_TAG_INTEGRITY);
if (!memory_hash)
goto end;
FindDriverEntryByBaseAddress(module_info->ImageBase, &entry);
if (!entry) {
DEBUG_ERROR("FindDriverEntryByBaseAddress failed with no status.");
goto end;
}
if (entry->hashed == FALSE) {
DEBUG_WARNING("Our module has not been hashed, returning.");
status = STATUS_HASH_NOT_PRESENT;
goto end;
}
status = HashModule(module_info, memory_hash);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("HashModule failed with status %x", status);
goto end;
}
/*
* Since we don't pass a return value, I think we would raise an invalid
* module error and stop the users game session ? since module .text
* section error would be a large red flag
*/
if (CompareHashes(memory_hash, entry->text_hash, SHA_256_HASH_LENGTH)) {
DEBUG_VERBOSE("Driver image is valid. Integrity check complete");
}
else {
DEBUG_WARNING("**!!** Driver image is NOT valid. **!!**");
ReportModifiedSelfDriverImage(module_info);
}
end:
if (memory_hash)
ExFreePoolWithTag(memory_hash, POOL_TAG_INTEGRITY);
if (modules.address)
ExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
return status;
}
FORCEINLINE
STATIC
VOID
IncrementActiveThreadCount(_Inout_ PSYS_MODULE_VAL_CONTEXT Context)
{
InterlockedIncrement(&Context->active_thread_count);
}
FORCEINLINE
STATIC
VOID
DecrementActiveThreadCount(_Inout_ PSYS_MODULE_VAL_CONTEXT Context)
{
InterlockedDecrement(&Context->active_thread_count);
}
FORCEINLINE
STATIC
VOID
SetVerificationBlockAsComplete(_In_ PSYS_MODULE_VAL_CONTEXT Context)
{
InterlockedExchange(&Context->complete, TRUE);
}
FORCEINLINE
STATIC
UINT32
GetCurrentVerificationIndex(_In_ PSYS_MODULE_VAL_CONTEXT Context)
{
return InterlockedExchange(&Context->current_count, Context->current_count);
}
FORCEINLINE
STATIC
UINT32
GetCurrentVerificationMaxIndex(
_In_ PSYS_MODULE_VAL_CONTEXT Context, _In_ UINT32 Count)
{
return Count + Context->block_size;
}
FORCEINLINE
STATIC
VOID
UpdateCurrentVerificationIndex(
_In_ PSYS_MODULE_VAL_CONTEXT Context, _In_ UINT32 Count)
{
InterlockedExchange(&Context->current_count, Count);
}
STATIC
VOID
SystemModuleVerificationDispatchFunction(
_In_ PDEVICE_OBJECT DeviceObject, _In_ PSYS_MODULE_VAL_CONTEXT Context)
{
UNREFERENCED_PARAMETER(DeviceObject);
NT_ASSERT(Context != NULL);
UINT32 count = 0;
UINT32 max = 0;
IncrementActiveThreadCount(Context);
count = GetCurrentVerificationIndex(Context);
/*
* theres a race condition here, where if the max is taken after a thread
* has alredy completed an iteration, meaning the current_count will be +1
* then what the starting thread is expecting, meaning the final iteration
* will be off by one. To fix just need to calculate the block max before
* threads are dispatched. todo!
*/
max = GetCurrentVerificationMaxIndex(Context, count);
for (; count < max && count < Context->total_count; count++) {
DEBUG_VERBOSE(
"ThrId: %lx, Count: %lx, Max: %lx, Total Count: %lx",
PsGetCurrentThreadId(),
count,
max,
Context->total_count);
if (!InterlockedCompareExchange(
&Context->dispatcher_info[count].validated,
TRUE,
FALSE)) {
ValidateSystemModule(&Context->module_info[count]);
}
}
if (count == Context->total_count)
SetVerificationBlockAsComplete(Context);
UpdateCurrentVerificationIndex(Context, count);
DecrementActiveThreadCount(Context);
}
#define VALIDATION_BLOCK_SIZE 25
FORCEINLINE
STATIC
VOID
InitSysModuleValidationContext(
_Out_ PSYS_MODULE_VAL_CONTEXT Context,
_In_ PMODULE_DISPATCHER_HEADER DispatcherArray,
_In_ PSYSTEM_MODULES SystemModules)
{
Context->active_thread_count = 0;
Context->active = TRUE;
Context->complete = FALSE;
Context->dispatcher_info = DispatcherArray;
Context->module_info = SystemModules->address;
Context->total_count = SystemModules->module_count;
Context->block_size = VALIDATION_BLOCK_SIZE;
/* skip hal.dll and ntosrnl.exe */
Context->current_count = 2;
}
/*
* Multithreaded delayed priority work items improve 1% lows by 25% and reduces
* average PC latency by 10% compared to traditional multithreading. This is
* important as having high average fps but low 1% lows just leads to stuttery
* gameplay which in competitive multiplayer games is simply not alright.
* Overall still room for improvement but from a statistical and feel standpoint
* which the gameplay is much smoother (tested in cs2).
*
* A potential idea for further improvement is finding the cores with the least
* cpu usages and setting the worker threads affinity accordingly.
*/
STATIC
NTSTATUS
InitialiseSystemModuleVerificationContext(PSYS_MODULE_VAL_CONTEXT Context)
{
NT_ASSERT(Context != NULL);
NTSTATUS status = STATUS_UNSUCCESSFUL;
SYSTEM_MODULES modules = {0};
PMODULE_DISPATCHER_HEADER dispatcher = NULL;
UINT32 count = 0;
status = GetSystemModuleInformation(&modules);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("GetSystemModuleInformation failed with status %x", status);
return status;
}
DEBUG_VERBOSE("driver count: %lx", modules.module_count);
count = modules.module_count * sizeof(MODULE_DISPATCHER_HEADER);
dispatcher =
ImpExAllocatePool2(POOL_FLAG_NON_PAGED, count, POOL_TAG_INTEGRITY);
if (!dispatcher) {
ImpExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
return STATUS_MEMORY_NOT_ALLOCATED;
}
InitSysModuleValidationContext(Context, dispatcher, &modules);
return status;
}
VOID
FreeWorkItems(_In_ PSYS_MODULE_VAL_CONTEXT Context)
{
NT_ASSERT(Context != NULL);
for (UINT32 index = 0; index < VERIFICATION_THREAD_COUNT; index++) {
if (Context->work_items[index]) {
ImpIoFreeWorkItem(Context->work_items[index]);
Context->work_items[index] = NULL;
}
}
}
STATIC
VOID
FreeModuleVerificationItems(_In_ PSYS_MODULE_VAL_CONTEXT Context)
{
NT_ASSERT(Context != NULL);
/* if a thread hasnt completed by this point, something catastrophic has
* gone wrong and maybe its better not to yield..*/
while (Context->active_thread_count)
YieldProcessor();
if (Context->module_info) {
ImpExFreePoolWithTag(Context->module_info, SYSTEM_MODULES_POOL);
Context->module_info = NULL;
}
if (Context->dispatcher_info) {
ImpExFreePoolWithTag(Context->dispatcher_info, POOL_TAG_INTEGRITY);
Context->dispatcher_info = NULL;
}
}
VOID
CleanupValidationContextOnUnload(_In_ PSYS_MODULE_VAL_CONTEXT Context)
{
Context->active = FALSE;
Context->complete = TRUE;
FreeWorkItems(Context);
FreeModuleVerificationItems(Context);
}
STATIC
VOID
DispatchVerificationWorkerThreads(_In_ PSYS_MODULE_VAL_CONTEXT Context)
{
for (UINT32 index = 0; index < VERIFICATION_THREAD_COUNT; index++) {
Context->work_items[index] =
ImpIoAllocateWorkItem(GetDriverDeviceObject());
if (!Context->work_items[index])
continue;
ImpIoQueueWorkItem(
Context->work_items[index],
SystemModuleVerificationDispatchFunction,
DelayedWorkQueue,
Context);
}
}
NTSTATUS
SystemModuleVerificationDispatcher()
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
PIO_WORKITEM work_item = NULL;
PSYS_MODULE_VAL_CONTEXT context = GetSystemModuleValidationContext();
if (context->complete) {
DEBUG_VERBOSE(
"System modules integrity check complete. Freeing items.");
context->active = FALSE;
context->complete = FALSE;
FreeModuleVerificationItems(context);
FreeWorkItems(context);
return STATUS_SUCCESS;
}
if (!context->active) {
DEBUG_VERBOSE("Context not active, generating new one");
status = InitialiseSystemModuleVerificationContext(context);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR(
"InitialiseSystemModuleVerificationContext failed with status %x",
status);
return status;
}
}
else {
FreeWorkItems(context);
}
DispatchVerificationWorkerThreads(context);
DEBUG_VERBOSE(
"All worker threads dispatched for system module validation.");
return STATUS_SUCCESS;
}
NTSTATUS
GetOsVersionInformation(_Out_ PRTL_OSVERSIONINFOW VersionInfo)
{
NTSTATUS status = STATUS_ABANDONED;
RTL_OSVERSIONINFOW info = {0};
if (!VersionInfo)
return STATUS_INVALID_PARAMETER;
status = ImpRtlGetVersion(&info);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("RtlGetVersion failed with status %x", status);
return status;
}
VersionInfo->dwBuildNumber = info.dwBuildNumber;
VersionInfo->dwMajorVersion = info.dwMajorVersion;
VersionInfo->dwMinorVersion = info.dwMinorVersion;
VersionInfo->dwOSVersionInfoSize = info.dwOSVersionInfoSize;
VersionInfo->dwPlatformId = info.dwPlatformId;
IntCopyMemory(
VersionInfo->szCSDVersion,
info.szCSDVersion,
sizeof(VersionInfo->szCSDVersion));
return status;
}
BOOLEAN
ValidateOurDriversDispatchRoutines()
{
PDRIVER_OBJECT driver = GetDriverObject();
if (driver->MajorFunction[IRP_MJ_CREATE] != DeviceCreate ||
driver->MajorFunction[IRP_MJ_CLOSE] != DeviceClose ||
driver->MajorFunction[IRP_MJ_DEVICE_CONTROL] != DeviceControl) {
DEBUG_WARNING(
"**!!** Drivers dispatch routine has been tampered with. **!!**");
return FALSE;
}
return TRUE;
}
STATIC
VOID
FreeHeartbeatObjects(_Inout_ PHEARTBEAT_CONFIGURATION Configuration)
{
if (Configuration->dpc) {
ImpExFreePoolWithTag(Configuration->dpc, POOL_TAG_HEARTBEAT);
Configuration->dpc = NULL;
}
if (Configuration->timer) {
ImpExFreePoolWithTag(Configuration->timer, POOL_TAG_HEARTBEAT);
Configuration->timer = NULL;
}
}
STATIC
NTSTATUS
AllocateHeartbeatObjects(_Inout_ PHEARTBEAT_CONFIGURATION Configuration)
{
Configuration->dpc = ImpExAllocatePool2(
POOL_FLAG_NON_PAGED,
sizeof(KDPC),
POOL_TAG_HEARTBEAT);
if (!Configuration->dpc)
return STATUS_INSUFFICIENT_RESOURCES;
Configuration->timer = ImpExAllocatePool2(
POOL_FLAG_NON_PAGED,
sizeof(KTIMER),
POOL_TAG_HEARTBEAT);
if (!Configuration->timer) {
ImpExFreePoolWithTag(Configuration->dpc, POOL_TAG_HEARTBEAT);
return STATUS_INSUFFICIENT_RESOURCES;
}
return STATUS_SUCCESS;
}
#define HEARTBEAT_NANOSECONDS_LOW \
(60ULL * 10000000ULL) // 1 min in 100-nanosecond intervals
#define HEARTBEAT_NANOSECONDS_HIGH \
(240ULL * 10000000ULL) // 4 mins in 100-nanosecond intervals
#define TICKS_TO_100_NS_INTERVALS(tick_count) ((tick_count) * 100000)
/* Generate a random due time between 1 and 4 minutes in 100-nanosecond
* intervals. */
STATIC
LARGE_INTEGER
GenerateHeartbeatDueTime()
{
UINT64 interval = 0;
LARGE_INTEGER ticks = {0};
LARGE_INTEGER due_time = {0};
KeQueryTickCount(&ticks);
interval = HEARTBEAT_NANOSECONDS_LOW +
(TICKS_TO_100_NS_INTERVALS(ticks.QuadPart) %
(HEARTBEAT_NANOSECONDS_HIGH - HEARTBEAT_NANOSECONDS_LOW));
due_time.QuadPart = -interval;
return due_time;
}
FORCEINLINE
STATIC
VOID
InitialiseHeartbeatObjects(_Inout_ PHEARTBEAT_CONFIGURATION Config)
{
KeInitializeDpc(Config->dpc, HeartbeatDpcRoutine, Config);
KeInitializeTimer(Config->timer);
KeSetTimer(Config->timer, GenerateHeartbeatDueTime(), Config->dpc);
}
FORCEINLINE
STATIC
VOID
SetHeartbeatActive(_Inout_ PHEARTBEAT_CONFIGURATION Configuration)
{
InterlockedIncrement(&Configuration->active);
}
FORCEINLINE
STATIC
VOID
SetHeartbeatInactive(_Inout_ PHEARTBEAT_CONFIGURATION Configuration)
{
InterlockedDecrement(&Configuration->active);
}
/* Blocks until heartbeat execution is complete */
FORCEINLINE
STATIC
VOID
WaitForHeartbeatCompletion(_In_ PHEARTBEAT_CONFIGURATION Configuration)
{
while (Configuration->active)
YieldProcessor();
}
FORCEINLINE
STATIC
VOID
IncrementHeartbeatCounter(_In_ PHEARTBEAT_CONFIGURATION Configuration)
{
InterlockedIncrement(&Configuration->counter);
}
FORCEINLINE
STATIC
PHEARTBEAT_PACKET
BuildHeartbeatPacket(_In_ UINT32 Size)
{
PIRP_QUEUE_HEAD queue = GetIrpQueueHead();
PHEARTBEAT_PACKET packet = NULL;
packet = ImpExAllocatePool2(POOL_FLAG_NON_PAGED, Size, POOL_TAG_HEARTBEAT);
if (!packet)
return NULL;
INIT_HEARTBEAT_PACKET(packet);
KeAcquireGuardedMutex(&queue->lock);
/*
* Its important to remember that since we query the packet metrics before
* the metrics are incremented for the current packets they will always be 1
* less then whats noted.
*/
packet->total_heartbeats_completed = queue->total_heartbeats_completed;
packet->total_irps_completed = queue->total_irps_completed;
packet->total_reports_completed = queue->total_reports_completed;
KeReleaseGuardedMutex(&queue->lock);
return packet;
}
STATIC
VOID
HeartbeatWorkItem(_In_ PDEVICE_OBJECT DeviceObject, _In_opt_ PVOID Context)
{
UNREFERENCED_PARAMETER(DeviceObject);
NT_ASSERT(Context != NULL);
if (!ARGUMENT_PRESENT(Context))
return;
UINT32 packet_size = 0;
NTSTATUS status = STATUS_UNSUCCESSFUL;
PHEARTBEAT_PACKET packet = NULL;
PHEARTBEAT_CONFIGURATION config = (PHEARTBEAT_CONFIGURATION)Context;
DEBUG_VERBOSE("Heartbeat timer alerted. Generating heartbeat packet.");
SetHeartbeatActive(config);
packet_size = CryptRequestRequiredBufferLength(sizeof(HEARTBEAT_PACKET));
packet = BuildHeartbeatPacket(packet_size);
if (packet) {
status = CryptEncryptBuffer(packet, packet_size);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("CryptEncryptBuffer: %lx", status);
ImpExFreePoolWithTag(packet, POOL_TAG_HEARTBEAT);
goto queue_next;
}
IrpQueueSchedulePacket(packet, packet_size);
IncrementHeartbeatCounter(config);
}
queue_next:
/* Ensure we wait until our heartbeats DPC has terminated. */
KeFlushQueuedDpcs();
FreeHeartbeatObjects(config);
status = AllocateHeartbeatObjects(config);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("AllocateHeartbeatObjects %x", status);
return;
}
InitialiseHeartbeatObjects(config);
SetHeartbeatInactive(config);
}
STATIC
VOID
HeartbeatDpcRoutine(
_In_ PKDPC Dpc,
_In_opt_ PVOID DeferredContext,
_In_opt_ PVOID SystemArgument1,
_In_opt_ PVOID SystemArgument2)
{
UNREFERENCED_PARAMETER(Dpc);
UNREFERENCED_PARAMETER(SystemArgument1);
UNREFERENCED_PARAMETER(SystemArgument2);
if (!ARGUMENT_PRESENT(DeferredContext))
return;
PHEARTBEAT_CONFIGURATION config = (PHEARTBEAT_CONFIGURATION)DeferredContext;
IoQueueWorkItem(
config->work_item,
HeartbeatWorkItem,
NormalWorkQueue,
config);
}
/*
* The premise behind this initial heartbeat monitor is that at a random
* interval a timer will be set. Once this timer is set, a dpc routine will
* run that will insert a heartbeat packet into the io queue which will be
* processed by user mode. Once the heartbeat is inserted, we queue a work
* item which will wait until the dpc routine is finished, free the current
* timer and work item (this is safe as the timer is removed from the timer
* queue when its alerted) and allocate a new timer and dpc object. We will
* then initalise them and insert them with another random value.
*
* The goal of this is to make reverse engineering the heartbeat process as
* hard as possible. And while it is only a start, I think its a start in
* the right direction.
*/
NTSTATUS
InitialiseHeartbeatConfiguration(_Out_ PHEARTBEAT_CONFIGURATION Configuration)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
Configuration->counter = 0;
Configuration->active = FALSE;
Configuration->seed = GenerateRandSeed();
Configuration->work_item = IoAllocateWorkItem(GetDriverDeviceObject());
if (!Configuration->work_item)
return STATUS_INSUFFICIENT_RESOURCES;
status = AllocateHeartbeatObjects(Configuration);
if (!NT_SUCCESS(status)) {
DEBUG_ERROR("AllocateHeartbeatObjects %x", status);
return status;
}
InitialiseHeartbeatObjects(Configuration);
return status;
}
VOID
FreeHeartbeatConfiguration(_Inout_ PHEARTBEAT_CONFIGURATION Configuration)
{
WaitForHeartbeatCompletion(Configuration);
KeCancelTimer(Configuration->timer);
FreeHeartbeatObjects(Configuration);
IoFreeWorkItem(Configuration->work_item);
}