#include "pool.h" #include #include "callbacks.h" #include "queue.h" #define PAGE_BASE_SIZE 0x1000 #define POOL_TAG_SIZE 0x004 #define PML4_ENTRY_COUNT 512 #define PDPT_ENTRY_COUNT 512 #define PD_ENTRY_COUNT 512 #define PT_ENTRY_COUNT 512 #define LARGE_PAGE_2MB_ENTRIES 512 #define LARGE_PAGE_1GB_ENTRIES 0x40000 #define CHUNK_SIZE 16 #define PROCESS_OBJECT_ALLOCATION_MARGIN 0x90 #define POOL_TAG_LENGTH 4 #define EXECUTIVE_OBJECT_COUNT 8 #define INDEX_PROCESS_POOL_TAG 0 #define INDEX_THREAD_POOL_TAG 1 #define INDEX_DESKTOP_POOL_TAG 2 #define INDEX_WINDOW_STATIONS_POOL_TAG 3 #define INDEX_MUTANTS_POOL_TAG 4 #define INDEX_FILE_OBJECTS_POOL_TAG 5 #define INDEX_DRIVERS_POOL_TAG 6 #define INDEX_SYMBOLIC_LINKS_POOL_TAG 7 CHAR EXECUTIVE_OBJECT_POOL_TAGS[EXECUTIVE_OBJECT_COUNT][POOL_TAG_LENGTH] = { "\x50\x72\x6f\x63", /* Process */ "\x54\x68\x72\x64", /* Thread */ "\x44\x65\x73\x6B", /* Desktop */ "\x57\x69\x6E\x64", /* Windows Station */ "\x4D\x75\x74\x65", /* Mutants i.e mutex etc. */ "\x46\x69\x6C\x65", /* File objects */ "\x44\x72\x69\x76", /* Drivers */ "\x4C\x69\x6E\x6B" /* Symbolic links */ }; PVOID process_buffer = NULL; ULONG process_count = NULL; PKDDEBUGGER_DATA64 GetGlobalDebuggerData() { CONTEXT context = { 0 }; PDUMP_HEADER dump_header = { 0 }; UINT64 thread_state; PKDDEBUGGER_DATA64 debugger_data = NULL; context.ContextFlags = CONTEXT_FULL; RtlCaptureContext(&context); dump_header = ExAllocatePool2(POOL_FLAG_NON_PAGED, DUMP_BLOCK_SIZE, POOL_DUMP_BLOCK_TAG); if (!dump_header) goto end; KeCapturePersistentThreadState( &context, NULL, NULL, NULL, NULL, NULL, NULL, dump_header ); debugger_data = (PKDDEBUGGER_DATA64)ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(KDDEBUGGER_DATA64), POOL_DEBUGGER_DATA_TAG); if (!debugger_data) goto end; RtlCopyMemory(debugger_data, dump_header->KdDebuggerDataBlock, sizeof(KDDEBUGGER_DATA64)); end: if (dump_header) ExFreePoolWithTag(dump_header, POOL_DUMP_BLOCK_TAG); return debugger_data; } VOID GetPsActiveProcessHead( _In_ PUINT64 Address ) { PKDDEBUGGER_DATA64 debugger_data = GetGlobalDebuggerData(); *Address = *(UINT64*)(debugger_data->PsActiveProcessHead); ExFreePoolWithTag(debugger_data, POOL_DEBUGGER_DATA_TAG); } /* * Here we define a signature that can be used to find EPROCESS structures consistently across * major windows versions. The fields we test have proven to be consistent in the following study: * * https://www.cise.ufl.edu/~traynor/papers/ccs09b.pdf * * Aswell as some of my own additional research and testing. The following signature is used: * * PeakVirtualSize must be greater then 0 for any valid process: * -> EPROCESS->PeakVirtualSize > 0 * * The DirectoryTableBase must be 0x20 aligned: * -> EPROCESS->DirectoryTableBase % 20 == 0 * * The pool allocation size must be greater then the size of an EPROCESS allocation and * less then the size of a page. Allocation size can be found with the following formula: * -> AllocationSize = POOL_HEADER->BlockSize * CHUNK_SIZE - sizeof(POOL_HEADER) * -> AllocationSize > sizeof(EPROCESS) * -> AllocationSize < PAGE_SIZE (4096) * * Pool type must be non-null: * -> POOL_HEADER->PoolType != NULL * * The process PEB must be a usermode address and 0x1000 aligned: * -> EPROCESS->Peb & 0x7ffd0000 == 0x7ffd0000 && EPROCESS->Peb % 0x1000 == 0 * * The object table must have the following properties and be 0x8 aligned: * -> EPROCESS->ObjectTable & 0xe0000000 == 0xe0000000 && EPROCESS->ObjectTable % 0x8 == 0 * * The allocation size, when AND'd with 0xfff0 must not equal 0xfff0: * -> AllocationSize & 0xfff0 != 0xfff0 * * This signature will allow us to consistently and accurately determine if a given pool allocation is * indeed an executive process allocation across major versions of Windows. */ STATIC BOOLEAN ValidateIfAddressIsProcessStructure( _In_ PVOID Address, _In_ PPOOL_HEADER PoolHeader ) { UINT64 peak_virtual_size = NULL; UINT64 dir_table_base = NULL; UINT64 allocation_size = NULL; UINT64 peb = NULL; UINT64 object_table = NULL; BOOLEAN peb_test = FALSE; BOOLEAN object_table_test = FALSE; UINT64 allocation_size_test = NULL; if (MmIsAddressValid((UINT64)Address + KPROCESS_DIRECTORY_TABLE_BASE_OFFSET)) dir_table_base = *(UINT64*)((UINT64)Address + KPROCESS_DIRECTORY_TABLE_BASE_OFFSET); if (MmIsAddressValid((UINT64)Address + EPROCESS_PEAK_VIRTUAL_SIZE_OFFSET)) peak_virtual_size = *(UINT64*)((UINT64)Address + EPROCESS_PEAK_VIRTUAL_SIZE_OFFSET); if (MmIsAddressValid((UINT64)PoolHeader + POOL_HEADER_BLOCK_SIZE_OFFSET)) allocation_size = PoolHeader->BlockSize * CHUNK_SIZE - sizeof(POOL_HEADER); if (MmIsAddressValid((UINT64)Address + EPROCESS_PEB_OFFSET)) peb = *(UINT64*)((UINT64)Address + EPROCESS_PEB_OFFSET); if (MmIsAddressValid((UINT64)Address + EPROCESS_OBJECT_TABLE_OFFSET)) object_table = *(UINT64*)((UINT64)Address + EPROCESS_OBJECT_TABLE_OFFSET); peb_test = peb == NULL || (peb & 0x7ffd0000 == 0x7ffd0000 && peb % 0x1000 == NULL); object_table_test = object_table == NULL || (object_table & 0xe0000000 == 0xe0000000 && object_table % 0x8 == 0); allocation_size_test = allocation_size & 0xfff0; if (peak_virtual_size > 0 && (dir_table_base & 0x20) == 0 && allocation_size > (EPROCESS_SIZE + OBJECT_HEADER_SIZE + sizeof(POOL_HEADER)) && PoolHeader->PoolType != NULL && !(allocation_size_test == 0xfff0) && !peb_test && !object_table_test) { return TRUE; } return FALSE; } /* * OBJECT_HEADER->InfoMask is a bit mask that tells us which optional * headers the object has. The bits are as follows: * * 0x1 = OBJECT_HEADER_CREATOR_INFO * 0x2 = OBJECT_HEADER_NAME_INFO * 0x4 = OBJECT_HEADER_HANDLE_INFO * 0x8 = OBJECT_HEADER_QUOTA_INFO * 0x10 = OBJECT_HEADER_PROCESS_INFO * 0x20 = OBJECT_HEADER_AUDIT_INFO * 0x40 = OBJECT_HEADER_HANDLE_REVOCATION_INFO */ /* * Idea: since we don't know the number of headers or the exact memory layout of the object * header section for these proc allocations, we can form an estimate address of base + 0x70 * and then iterate the loaded process list and if theres an address within say 0x50 of it we * can assume that the process is legitmate. Then to find an unlinked process, it wouldn't * exist in the loaded module list, check that it hasnt been deallocated and then focus on * scanning it for name etc. Maybe scan for .exe extension? * * Also use the full name so we get the file extension and path not the 15 char long one */ STATIC VOID ScanPageForKernelObjectAllocation( _In_ UINT64 PageBase, _In_ ULONG PageSize, _In_ ULONG ObjectIndex, _In_ PVOID AddressBuffer ) { INT length = 0; CHAR current_char; CHAR current_sig_byte; PPOOL_HEADER pool_header; PEPROCESS process = NULL; PEPROCESS process_size_one = NULL; PEPROCESS process_size_two = NULL; PEPROCESS test_process = NULL; LPCSTR process_name; PUINT64 address_list; ULONG allocation_size; ULONG minimum_process_allocation_size = EPROCESS_SIZE - sizeof(POOL_HEADER) - OBJECT_HEADER_SIZE; if (!PageBase || !PageSize) return; for (INT offset = 0; offset <= PageSize - POOL_TAG_LENGTH - minimum_process_allocation_size; offset++) { for (INT sig_index = 0; sig_index < POOL_TAG_LENGTH + 1; sig_index++) { if (!MmIsAddressValid(PageBase + offset + sig_index)) break; current_char = *(PCHAR)(PageBase + offset + sig_index); current_sig_byte = EXECUTIVE_OBJECT_POOL_TAGS[ObjectIndex][sig_index]; if (sig_index == POOL_TAG_LENGTH) { pool_header = (UINT64)PageBase + offset - POOL_HEADER_TAG_OFFSET; if (!MmIsAddressValid((PVOID)pool_header)) break; /* * Since every executive allocation is required to have an _OBJECT_HEADER, we start * iterating from the size of this object header, then jump up in blocks of 0x10 since * every object header is divisible by 0x10. We iterate up to 0xb0 which is equal to the following: * * 0xb0 = sizeof(ALL_HEADER_OBJECTS) + 0x10 where the 0x10 is 16 bytes of padding. */ for (ULONG header_size = OBJECT_HEADER_SIZE; header_size < 0xb0; header_size += 0x10) { test_process = (PEPROCESS)((UINT64)pool_header + sizeof(POOL_HEADER) + header_size); if (ValidateIfAddressIsProcessStructure(test_process, pool_header)) { process = test_process; break; } } if (process == NULL) break; DEBUG_LOG("Process: %llx", (UINT64)process); address_list = (PUINT64)AddressBuffer; for (INT i = 0; i < process_count; i++) { if (address_list[i] == NULL) { address_list[i] = (UINT64)process; break; } } break; } if (current_char != current_sig_byte) break; } } } /* * Using MmGetPhysicalMemoryRangesEx2(), we can get a block of structures that * describe the physical memory layout. With each physical page base we are going * to enumerate, we want to make sure it lies within an appropriate region of * physical memory, so this function is to check for exactly that. */ STATIC BOOLEAN IsPhysicalAddressInPhysicalMemoryRange( _In_ UINT64 PhysicalAddress, _In_ PPHYSICAL_MEMORY_RANGE PhysicalMemoryRanges ) { ULONG page_index = 0; UINT64 start_address = 0; UINT64 end_address = 0; while (PhysicalMemoryRanges[page_index].NumberOfBytes.QuadPart != NULL) { start_address = PhysicalMemoryRanges[page_index].BaseAddress.QuadPart; end_address = start_address + PhysicalMemoryRanges[page_index].NumberOfBytes.QuadPart; if (PhysicalAddress >= start_address && PhysicalAddress <= end_address) return TRUE; page_index++; } return FALSE; } STATIC VOID EnumerateKernelLargePages( _In_ UINT64 PageBase, _In_ ULONG PageSize, _In_ PVOID AddressBuffer, _In_ ULONG ObjectIndex ) { /* * Split the large pages up into blocks of 0x1000 and scan each block */ for (UINT64 page_index = 0; page_index < PageSize; page_index++) { ScanPageForKernelObjectAllocation( PageBase + (page_index * PAGE_SIZE), PAGE_SIZE, ObjectIndex, AddressBuffer ); } } /* * This is your basic page table walk function. On intel systems, paging has 4 levels, * each table holds 512 entries with a total size of 0x1000 (512 * sizeof(QWORD)). Each entry * in each table contains a value with a subset bitfield containing the physical address * of the base of the next table in the structure. So for example, a PML4 entry contains * a physical address that points to the base of the PDPT table, it is the same for a PDPT * entry -> PD base and so on. * * However, as with all good things Windows has implemented security features meaning * we cannot use functions such as MmCopyMemory or MmMapIoSpace on paging structures, * so we must find another way to walk the pages. Luckily for us, there exists * MmGetVirtualForPhysical. This function is self explanatory and returns the corresponding * virtual address given a physical address. What this means is that we can extract a page * entry physical address, pass it to MmGetVirtualForPhysical which returns us the virtual * address of the base of the next page structure. This is because page tables are still * mapped by the kernel and exist in virtual memory just like everything else and hence * reading the value at all 512 entries from the virtual base will give us the equivalent * value as directly reading the physical address. * * Using this, we essentially walk the page tables as any regular translation would * except instead of simply reading the physical we translate it to a virtual address * and extract the physical address from the value at each virtual address page entry. */ STATIC VOID WalkKernelPageTables(PVOID AddressBuffer) { CR3 cr3; PML4E pml4_base; PML4E pml4_entry; UINT64 pdpt_base; UINT64 pd_base; UINT64 pt_base; PDPTE pdpt_entry; PDPTE_LARGE pdpt_large_entry; PDE pd_entry; PDE_LARGE pd_large_entry; PTE pt_entry; UINT64 base_physical_page; UINT64 base_virtual_page; UINT64 base_2mb_virtual_page; UINT64 base_1gb_virtual_page; PHYSICAL_ADDRESS physical; PPHYSICAL_MEMORY_RANGE physical_memory_ranges; KIRQL irql; physical_memory_ranges = MmGetPhysicalMemoryRangesEx2(NULL, NULL); if (physical_memory_ranges == NULL) { DEBUG_ERROR("LOL stupid cunt not working"); return; } cr3.BitAddress = __readcr3(); physical.QuadPart = cr3.Bits.PhysicalAddress << PAGE_4KB_SHIFT; pml4_base.BitAddress = MmGetVirtualForPhysical(physical); if (!MmIsAddressValid(pml4_base.BitAddress) || !pml4_base.BitAddress) return; for (INT pml4_index = 0; pml4_index < PML4_ENTRY_COUNT; pml4_index++) { if (!MmIsAddressValid(pml4_base.BitAddress + pml4_index * sizeof(UINT64))) continue; pml4_entry.BitAddress = *(UINT64*)(pml4_base.BitAddress + pml4_index * sizeof(UINT64)); if (pml4_entry.Bits.Present == NULL) continue; physical.QuadPart = pml4_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT; pdpt_base = MmGetVirtualForPhysical(physical); if (!pdpt_base || !MmIsAddressValid(pdpt_base)) continue; for (INT pdpt_index = 0; pdpt_index < PDPT_ENTRY_COUNT; pdpt_index++) { if (!MmIsAddressValid(pdpt_base + pdpt_index * sizeof(UINT64))) continue; pdpt_entry.BitAddress = *(UINT64*)(pdpt_base + pdpt_index * sizeof(UINT64)); if (pdpt_entry.Bits.Present == NULL) continue; if (IS_LARGE_PAGE(pdpt_entry.BitAddress)) { /* 1gb size page */ pdpt_large_entry.BitAddress = pdpt_entry.BitAddress; physical.QuadPart = pdpt_large_entry.Bits.PhysicalAddress << PAGE_1GB_SHIFT; if (IsPhysicalAddressInPhysicalMemoryRange(physical.QuadPart, physical_memory_ranges) == FALSE) continue; base_1gb_virtual_page = MmGetVirtualForPhysical(physical); if (!base_1gb_virtual_page || !MmIsAddressValid(base_1gb_virtual_page)) continue; EnumerateKernelLargePages( base_1gb_virtual_page, LARGE_PAGE_1GB_ENTRIES, AddressBuffer, INDEX_PROCESS_POOL_TAG ); continue; } physical.QuadPart = pdpt_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT; pd_base = MmGetVirtualForPhysical(physical); if (!pd_base || !MmIsAddressValid(pd_base)) continue; for (INT pd_index = 0; pd_index < PD_ENTRY_COUNT; pd_index++) { if (!MmIsAddressValid(pd_base + pd_index * sizeof(UINT64))) continue; pd_entry.BitAddress = *(UINT64*)(pd_base + pd_index * sizeof(UINT64)); if (pd_entry.Bits.Present == NULL) continue; if (IS_LARGE_PAGE(pd_entry.BitAddress)) { /* 2MB size page */ pd_large_entry.BitAddress = pd_entry.BitAddress; physical.QuadPart = pd_large_entry.Bits.PhysicalAddress << PAGE_2MB_SHIFT; if (IsPhysicalAddressInPhysicalMemoryRange(physical.QuadPart, physical_memory_ranges) == FALSE) continue; base_2mb_virtual_page = MmGetVirtualForPhysical(physical); if (!base_2mb_virtual_page || !MmIsAddressValid(base_2mb_virtual_page)) continue; EnumerateKernelLargePages( base_2mb_virtual_page, LARGE_PAGE_2MB_ENTRIES, AddressBuffer, INDEX_PROCESS_POOL_TAG ); continue; } physical.QuadPart = pd_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT; if (!MmIsAddressValid(pd_base + pd_index * sizeof(UINT64))) continue; pt_base = MmGetVirtualForPhysical(physical); if (!pt_base || !MmIsAddressValid(pt_base)) continue; for (INT pt_index = 0; pt_index < PT_ENTRY_COUNT; pt_index++) { if (!MmIsAddressValid(pt_base + pt_index * sizeof(UINT64))) continue; pt_entry.BitAddress = *(UINT64*)(pt_base + pt_index * sizeof(UINT64)); if (pt_entry.Bits.Present == NULL) continue; physical.QuadPart = pt_entry.Bits.PhysicalAddress << PAGE_4KB_SHIFT; /* if the page base isnt in a legit region, go next */ if (IsPhysicalAddressInPhysicalMemoryRange(physical.QuadPart, physical_memory_ranges) == FALSE) continue; base_virtual_page = MmGetVirtualForPhysical(physical); /* stupid fucking intellisense error GO AWAY! */ if (base_virtual_page == NULL || !MmIsAddressValid(base_virtual_page)) continue; ScanPageForKernelObjectAllocation( base_virtual_page, PAGE_BASE_SIZE, INDEX_PROCESS_POOL_TAG, AddressBuffer ); } } } } DEBUG_LOG("Finished scanning memory"); } STATIC VOID IncrementProcessCounter() { process_count++; } STATIC VOID CheckIfProcessAllocationIsInProcessList( _In_ PEPROCESS Process ) { PUINT64 allocation_address; for (INT i = 0; i < process_count; i++) { allocation_address = (PUINT64)process_buffer; if ((UINT64)Process >= allocation_address[i] - PROCESS_OBJECT_ALLOCATION_MARGIN && (UINT64)Process <= allocation_address[i] + PROCESS_OBJECT_ALLOCATION_MARGIN) { RtlZeroMemory((UINT64)process_buffer + i * sizeof(UINT64), sizeof(UINT64)); } } } NTSTATUS FindUnlinkedProcesses( _In_ PIRP Irp ) { PUINT64 allocation_address; PINVALID_PROCESS_ALLOCATION_REPORT report_buffer = NULL; EnumerateProcessListWithCallbackFunction( IncrementProcessCounter, NULL ); if (process_count == NULL) { DEBUG_ERROR("Faield to get process count "); return STATUS_ABANDONED; } process_buffer = ExAllocatePool2(POOL_FLAG_NON_PAGED, process_count * 2 * sizeof(UINT64), PROCESS_ADDRESS_LIST_TAG); if (!process_buffer) return STATUS_ABANDONED; WalkKernelPageTables(process_buffer); EnumerateProcessListWithCallbackFunction( CheckIfProcessAllocationIsInProcessList, NULL ); allocation_address = (PUINT64)process_buffer; for (INT i = 0; i < process_count; i++) { if (allocation_address[i] == NULL) continue; /* * It's important to remember that at this point it is still not guaranteed that we have found * an unlinked process allocation. It is better to have a few false positives that can be later * analysed rather then enforce a strict signature and potentially miss a real unlinked process. */ DEBUG_ERROR("INVALID POOL proc OMGGG"); report_buffer = ExAllocatePool2(POOL_FLAG_NON_PAGED, sizeof(INVALID_PROCESS_ALLOCATION_REPORT), REPORT_POOL_TAG); if (!report_buffer) goto end; report_buffer->report_code = REPORT_INVALID_PROCESS_ALLOCATION; RtlCopyMemory( report_buffer->process, (UINT64)allocation_address[i] - OBJECT_HEADER_SIZE, REPORT_INVALID_PROCESS_BUFFER_SIZE ); InsertReportToQueue(report_buffer); } end: if (process_buffer) ExFreePoolWithTag(process_buffer, PROCESS_ADDRESS_LIST_TAG); /* todo: make use of the new context variable in the enum proc func */ process_count = NULL; process_buffer = NULL; return STATUS_SUCCESS; }