mirror-ac/driver/integrity.c

1683 lines
52 KiB
C
Raw Normal View History

2023-08-22 19:32:25 +02:00
#include "integrity.h"
#include "common.h"
2023-09-01 13:46:31 +02:00
#include "driver.h"
2023-08-22 19:32:25 +02:00
#include "modules.h"
2023-09-01 12:56:27 +02:00
#include <bcrypt.h>
2023-09-28 09:15:47 +02:00
#include <initguid.h>
#include <devpkey.h>
2023-09-01 12:56:27 +02:00
2023-09-27 15:10:12 +02:00
#define SMBIOS_TABLE 'RSMB'
/* for generic intel */
#define SMBIOS_SYSTEM_INFORMATION_TYPE_2_TABLE 2
#define MOTHERBOARD_SERIAL_CODE_TABLE_INDEX 4
#define NULL_TERMINATOR '\0'
/* for testing purposes in vmware */
#define VMWARE_SMBIOS_TABLE 1
#define VMWARE_SMBIOS_TABLE_INDEX 3
typedef struct _INTEGRITY_CHECK_HEADER
{
2023-10-05 08:27:17 +02:00
INT executable_section_count;
LONG total_packet_size;
2023-10-03 18:03:55 +02:00
}INTEGRITY_CHECK_HEADER, * PINTEGRITY_CHECK_HEADER;
2023-09-27 15:10:12 +02:00
#define MAX_MODULE_PATH 256
typedef struct _PROCESS_MODULE_INFORMATION
{
2023-10-05 08:27:17 +02:00
PVOID module_base;
SIZE_T module_size;
WCHAR module_path[MAX_MODULE_PATH];
2023-09-27 15:10:12 +02:00
}PROCESS_MODULE_INFORMATION, * PPROCESS_MODULE_INFORMATION;
typedef struct _PROCESS_MODULE_VALIDATION_RESULT
{
2023-10-05 08:27:17 +02:00
INT is_module_valid;
2023-09-27 15:10:12 +02:00
}PROCESS_MODULE_VALIDATION_RESULT, * PPROCESS_MODULE_VALIDATION_RESULT;
2023-10-08 06:24:54 +02:00
STATIC
NTSTATUS
InitiateEptFunctionAddressArrays();
STATIC
NTSTATUS
GetModuleInformationByName(
_Inout_ PRTL_MODULE_EXTENDED_INFO ModuleInfo,
_In_ LPCSTR ModuleName);
STATIC
NTSTATUS
StoreModuleExecutableRegionsInBuffer(
_Inout_ PVOID* Buffer,
_In_ PVOID ModuleBase,
_In_ SIZE_T ModuleSize,
_Inout_ PSIZE_T BytesWritten);
STATIC
NTSTATUS
MapDiskImageIntoVirtualAddressSpace(
_Inout_ PHANDLE SectionHandle,
_Inout_ PVOID* Section,
_In_ PUNICODE_STRING Path,
_Inout_ PSIZE_T Size);
STATIC
NTSTATUS
ComputeHashOfBuffer(
_In_ PVOID Buffer,
_In_ ULONG BufferSize,
_Inout_ PVOID* HashResult,
_Inout_ PULONG HashResultSize);
STATIC
VOID
GetNextSMBIOSStructureInTable(
_Inout_ PSMBIOS_TABLE_HEADER* CurrentStructure);
STATIC
NTSTATUS
GetStringAtIndexFromSMBIOSTable(
_In_ PSMBIOS_TABLE_HEADER Table,
_In_ INT Index,
_In_ PVOID Buffer,
_In_ SIZE_T BufferSize);
STATIC
NTSTATUS
GetAverageReadTimeAtRoutine(
_In_ PVOID RoutineAddress,
_Inout_ PUINT64 AverageTime);
STATIC
NTSTATUS
RegistryPathQueryTestSigningCallback(
IN PWSTR ValueName,
IN ULONG ValueType,
IN PVOID ValueData,
IN ULONG ValueLength,
IN PVOID Context,
IN PVOID EntryContext);
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, GetDriverImageSize)
#pragma alloc_text(PAGE, GetModuleInformationByName)
#pragma alloc_text(PAGE, StoreModuleExecutableRegionsInBuffer)
#pragma alloc_text(PAGE, MapDiskImageIntoVirtualAddressSpace)
#pragma alloc_text(PAGE, ComputeHashOfBuffer)
#pragma alloc_text(PAGE, VerifyInMemoryImageVsDiskImage)
#pragma alloc_text(PAGE, RetrieveInMemoryModuleExecutableSections)
#pragma alloc_text(PAGE, GetNextSMBIOSStructureInTable)
#pragma alloc_text(PAGE, GetStringAtIndexFromSMBIOSTable)
#pragma alloc_text(PAGE, ParseSMBIOSTable)
#pragma alloc_text(PAGE, ValidateProcessLoadedModule)
#pragma alloc_text(PAGE, GetHardDiskDriveSerialNumber)
#pragma alloc_text(PAGE, ScanForSignature)
#pragma alloc_text(PAGE, GetAverageReadTimeAtRoutine)
#pragma alloc_text(PAGE, InitiateEptFunctionAddressArrays)
#pragma alloc_text(PAGE, DetectEptHooksInKeyFunctions)
#pragma alloc_text(PAGE, RegistryPathQueryTestSigningCallback)
#pragma alloc_text(PAGE, DetermineIfTestSigningIsEnabled)
#endif
2023-08-23 14:14:20 +02:00
/*
2023-10-03 18:03:55 +02:00
* note: this can be put into its own function wihtout an IRP as argument then it can be used
2023-08-23 14:14:20 +02:00
* in both the get driver image ioctl handler and the CopyDriverExecvutableRegions func
*/
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
GetDriverImageSize(
2023-10-07 17:37:47 +02:00
_Inout_ PIRP Irp
2023-08-23 14:14:20 +02:00
)
{
2023-10-05 08:27:17 +02:00
NTSTATUS status;
SYSTEM_MODULES modules = { 0 };
PRTL_MODULE_EXTENDED_INFO driver_info;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
status = GetSystemModuleInformation(&modules);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("GetSystemModuleInformation failed with status %x", status);
return status;
}
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
driver_info = FindSystemModuleByName(
"driver.sys",
&modules
);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
Irp->IoStatus.Information = sizeof(ULONG);
RtlCopyMemory(Irp->AssociatedIrp.SystemBuffer, &driver_info->ImageSize, sizeof(ULONG));
2023-10-03 18:03:55 +02:00
2023-10-05 08:27:17 +02:00
if (modules.address)
ExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
return status;
2023-08-23 14:14:20 +02:00
}
2023-09-27 06:22:14 +02:00
STATIC
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
GetModuleInformationByName(
2023-10-07 17:37:47 +02:00
_Inout_ PRTL_MODULE_EXTENDED_INFO ModuleInfo,
2023-10-05 08:27:17 +02:00
_In_ LPCSTR ModuleName
2023-08-22 19:32:25 +02:00
)
{
2023-10-05 08:27:17 +02:00
NTSTATUS status = STATUS_SUCCESS;
SYSTEM_MODULES modules = { 0 };
PRTL_MODULE_EXTENDED_INFO driver_info;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
status = GetSystemModuleInformation(&modules);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("GetSystemModuleInformation failed with status %x", status);
//TerminateProtectedProcessOnViolation();
return status;
}
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
driver_info = FindSystemModuleByName(
"driver.sys",
&modules
);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
ModuleInfo->FileNameOffset = driver_info->FileNameOffset;
ModuleInfo->ImageBase = driver_info->ImageBase;
ModuleInfo->ImageSize = driver_info->ImageSize;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
RtlCopyMemory(
ModuleInfo->FullPathName,
driver_info->FullPathName,
sizeof(ModuleInfo->FullPathName)
);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
if (modules.address)
ExFreePoolWithTag(modules.address, SYSTEM_MODULES_POOL);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
return status;
2023-08-28 17:00:52 +02:00
}
2023-09-27 06:22:14 +02:00
STATIC
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
StoreModuleExecutableRegionsInBuffer(
2023-10-07 17:37:47 +02:00
_Inout_ PVOID* Buffer,
2023-10-05 08:27:17 +02:00
_In_ PVOID ModuleBase,
_In_ SIZE_T ModuleSize,
2023-10-07 17:37:47 +02:00
_Inout_ PSIZE_T BytesWritten
2023-08-31 13:21:49 +02:00
)
{
2023-10-05 08:27:17 +02:00
NTSTATUS status = STATUS_SUCCESS;
PIMAGE_DOS_HEADER dos_header;
PLOCAL_NT_HEADER nt_header;
PIMAGE_SECTION_HEADER section;
ULONG total_packet_size = 0;
ULONG num_sections = 0;
ULONG num_executable_sections = 0;
UINT64 buffer_base;
ULONG bytes_returned;
MM_COPY_ADDRESS address;
if (!ModuleBase || !ModuleSize)
return STATUS_INVALID_PARAMETER;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
/*
* The reason we allocate a buffer to temporarily hold the section data is that
* we don't know the total size until after we iterate over the sections meaning
* we cant set Irp->IoStatus.Information to the size of our reponse until we
* enumerate and count all executable sections for the file.
*/
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
*Buffer = ExAllocatePool2(POOL_FLAG_NON_PAGED, ModuleSize + sizeof(INTEGRITY_CHECK_HEADER), POOL_TAG_INTEGRITY);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
if (!*Buffer)
return STATUS_MEMORY_NOT_ALLOCATED;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
/*
* Note: Verifier doesn't like it when we map the module so rather then mapping it to our address
* space we will simply use MmCopyMemory on the module to avoid upsetting verifier :)
*/
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
dos_header = (PIMAGE_DOS_HEADER)ModuleBase;
/*
* The IMAGE_DOS_HEADER.e_lfanew stores the offset of the IMAGE_NT_HEADER from the base
* of the image.
*/
nt_header = (struct _IMAGE_NT_HEADERS64*)((UINT64)ModuleBase + dos_header->e_lfanew);
num_sections = nt_header->FileHeader.NumberOfSections;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
/*
* The IMAGE_FIRST_SECTION macro takes in an IMAGE_NT_HEADER and returns the address of
* the first section of the PE file.
*/
section = IMAGE_FIRST_SECTION(nt_header);
buffer_base = (UINT64)*Buffer + sizeof(INTEGRITY_CHECK_HEADER);
for (ULONG index = 0; index < num_sections; index++)
{
if (section->Characteristics & IMAGE_SCN_MEM_EXECUTE)
{
/*
* Note: MmCopyMemory will fail on discardable sections.
*/
address.VirtualAddress = section;
status = MmCopyMemory(
(UINT64)buffer_base + total_packet_size,
address,
sizeof(IMAGE_SECTION_HEADER),
MM_COPY_MEMORY_VIRTUAL,
&bytes_returned
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("MmCopyMemory failed with status %x", status);
ExFreePoolWithTag(*Buffer, POOL_TAG_INTEGRITY);
*Buffer = NULL;
//TerminateProtectedProcessOnViolation();
return status;
}
address.VirtualAddress = (UINT64)ModuleBase + section->PointerToRawData;
status = MmCopyMemory(
(UINT64)buffer_base + total_packet_size + sizeof(IMAGE_SECTION_HEADER),
address,
section->SizeOfRawData,
MM_COPY_MEMORY_VIRTUAL,
&bytes_returned
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("MmCopyMemory failed with status %x", status);
ExFreePoolWithTag(*Buffer, POOL_TAG_INTEGRITY);
*Buffer = NULL;
//TerminateProtectedProcessOnViolation();
return status;
}
total_packet_size += section->SizeOfRawData + sizeof(IMAGE_SECTION_HEADER);
num_executable_sections += 1;
}
section++;
}
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
INTEGRITY_CHECK_HEADER header = { 0 };
header.executable_section_count = num_executable_sections;
header.total_packet_size = total_packet_size + sizeof(INTEGRITY_CHECK_HEADER);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
RtlCopyMemory(
*Buffer,
&header,
sizeof(INTEGRITY_CHECK_HEADER)
);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
*BytesWritten = total_packet_size + sizeof(INTEGRITY_CHECK_HEADER);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
return status;
}
2023-09-27 06:22:14 +02:00
STATIC
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
MapDiskImageIntoVirtualAddressSpace(
2023-10-07 17:37:47 +02:00
_Inout_ PHANDLE SectionHandle,
_Inout_ PVOID* Section,
2023-10-05 08:27:17 +02:00
_In_ PUNICODE_STRING Path,
2023-10-07 17:37:47 +02:00
_Inout_ PSIZE_T Size
2023-08-31 13:21:49 +02:00
)
2023-08-28 17:00:52 +02:00
{
2023-10-05 08:27:17 +02:00
NTSTATUS status;
HANDLE file_handle;
OBJECT_ATTRIBUTES object_attributes;
PIO_STATUS_BLOCK pio_block;
UNICODE_STRING path;
RtlInitUnicodeString(&path, Path->Buffer);
InitializeObjectAttributes(
&object_attributes,
&path,
OBJ_KERNEL_HANDLE | OBJ_CASE_INSENSITIVE,
NULL,
NULL
);
status = ZwOpenFile(
&file_handle,
FILE_GENERIC_READ,
&object_attributes,
&pio_block,
NULL,
NULL
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("ZwOpenFile failed with statsu %x", status);
//TerminateProtectedProcessOnViolation();
return status;
}
object_attributes.ObjectName = NULL;
2023-09-05 19:20:21 +02:00
/*
2023-10-05 08:27:17 +02:00
* Its important that we set the SEC_IMAGE flag with the PAGE_READONLY
* flag as we are mapping an executable image.
2023-09-05 19:20:21 +02:00
*/
2023-10-05 08:27:17 +02:00
status = ZwCreateSection(
SectionHandle,
SECTION_ALL_ACCESS,
&object_attributes,
NULL,
PAGE_READONLY,
SEC_IMAGE,
file_handle
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("ZwCreateSection failed with status %x", status);
ZwClose(file_handle);
*SectionHandle = NULL;
//TerminateProtectedProcessOnViolation();
return status;
}
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
/*
* Mapping a section with the flag SEC_IMAGE (see function above) tells the os we
* are mapping an executable image. This then allows the OS to take care of parsing
* the PE header and dealing with all relocations for us, meaning the mapped image
* will be identical to the in memory image.
*/
status = ZwMapViewOfSection(
*SectionHandle,
ZwCurrentProcess(),
Section,
NULL,
NULL,
NULL,
Size,
ViewUnmap,
MEM_TOP_DOWN,
PAGE_READONLY
);
if (!NT_SUCCESS(status))
{
/*
* It is of utmost importants to mark SectionHandle as null after closing the
* handle from inside this function since an error has occured. The reason this is
* so important is because we are not responsible for freeing the function if it succeeds
* and even if it fails, we still allocate a value to the handle via ZwCreateSection.
* Meaning when the caller goes to check if the handle is null, it will not be null
* and will cause a double free.
*/
DEBUG_ERROR("ZwMapViewOfSection failed with status %x", status);
ZwClose(file_handle);
ZwClose(*SectionHandle);
*SectionHandle = NULL;
//TerminateProtectedProcessOnViolation();
return status;
}
ZwClose(file_handle);
return status;
2023-09-01 12:56:27 +02:00
}
2023-09-27 06:22:14 +02:00
STATIC
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
ComputeHashOfBuffer(
2023-10-05 08:27:17 +02:00
_In_ PVOID Buffer,
_In_ ULONG BufferSize,
2023-10-07 17:37:47 +02:00
_Inout_ PVOID* HashResult,
_Inout_ PULONG HashResultSize
2023-09-01 12:56:27 +02:00
)
{
2023-10-05 08:27:17 +02:00
/*
* Since the windows documentation for the BCrypt functions contain the worst variable naming scheme
* in existence, I will try to explain what they do. (for my sake and any readers who also aren't smart
* enough to understand their otherworldy naming convention)
*
* algo_handle: handle to our BCrypt algorithm
* hash_handle: handle to our BCrypt hash
* bytes_copied: number of bytes that were copied to the output buffer when using BCryptGetProperty
* resulting_hash_size: this is the size of the final buffer hash, it should be equal to 32 (sizeof SHA256 hash)
* hash_object_size: the size of the buffer that will temporarily store our hash object
* hash_object: pointer to the buffer storing our hash object which is used to hash our buffer
* resulting_hash: pointer to the buffer that stores the resulting hash of our buffer, this is what we care about
*/
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
NTSTATUS status;
BCRYPT_ALG_HANDLE algo_handle = NULL;
BCRYPT_HASH_HANDLE hash_handle = NULL;
ULONG bytes_copied = 0;
ULONG resulting_hash_size = 0;
ULONG hash_object_size = 0;
PCHAR hash_object = NULL;
PCHAR resulting_hash = NULL;
status = BCryptOpenAlgorithmProvider(
&algo_handle,
BCRYPT_SHA256_ALGORITHM,
NULL,
NULL
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("BCryptOpenAlogrithmProvider failed with status %x", status);
//TerminateProtectedProcessOnViolation();
goto end;
}
/*
* Request the size of the hash object buffer, this is different then the buffer that
* will store the resulting hash, instead this will be used to store the hash object
* used to create the hash.
*/
status = BCryptGetProperty(
algo_handle,
BCRYPT_OBJECT_LENGTH,
(PCHAR)&hash_object_size,
sizeof(ULONG),
&bytes_copied,
NULL
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("BCryptGetProperty failed with status %x", status);
//TerminateProtectedProcessOnViolation();
goto end;
}
hash_object = ExAllocatePool2(POOL_FLAG_NON_PAGED, hash_object_size, POOL_TAG_INTEGRITY);
if (!hash_object)
{
status = STATUS_MEMORY_NOT_ALLOCATED;
goto end;
}
/*
* This call gets the size of the resulting hash, which we will use to allocate the
* resulting hash buffer.
*/
status = BCryptGetProperty(
algo_handle,
BCRYPT_HASH_LENGTH,
(PCHAR)&resulting_hash_size,
sizeof(ULONG),
&bytes_copied,
NULL
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("BCryptGetProperty failed with status %x", status);
//TerminateProtectedProcessOnViolation();
goto end;
}
resulting_hash = ExAllocatePool2(POOL_FLAG_NON_PAGED, resulting_hash_size, POOL_TAG_INTEGRITY);
if (!resulting_hash)
{
status = STATUS_MEMORY_NOT_ALLOCATED;
goto end;
}
/*
* Here we create our hash object and store it in the hash_object buffer.
*/
status = BCryptCreateHash(
algo_handle,
&hash_handle,
hash_object,
hash_object_size,
NULL,
NULL,
NULL
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("BCryptCreateHash failed with status %x", status);
//TerminateProtectedProcessOnViolation();
goto end;
}
/*
* This function hashes the buffer, but does NOT store it in our resulting buffer yet,
* we need to call BCryptFinishHash to retrieve the final hash.
*/
status = BCryptHashData(
hash_handle,
Buffer,
BufferSize,
NULL
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("BCryptHashData failed with status %x", status);
//TerminateProtectedProcessOnViolation();
goto end;
}
/*
* As said in the previous comment, this is where we retrieve the final hash and store
* it in our output buffer.
*/
status = BCryptFinishHash(
hash_handle,
resulting_hash,
resulting_hash_size,
NULL
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("BCryptFinishHash failed with status %x", status);
//TerminateProtectedProcessOnViolation();
return status;
}
*HashResult = resulting_hash;
*HashResultSize = resulting_hash_size;
2023-09-01 12:56:27 +02:00
end:
2023-10-05 08:27:17 +02:00
if (algo_handle)
BCryptCloseAlgorithmProvider(algo_handle, NULL);
2023-09-01 12:56:27 +02:00
2023-10-05 08:27:17 +02:00
if (hash_handle)
BCryptDestroyHash(hash_handle);
2023-09-01 12:56:27 +02:00
2023-10-05 08:27:17 +02:00
if (hash_object)
ExFreePoolWithTag(hash_object, POOL_TAG_INTEGRITY);
2023-10-05 08:27:17 +02:00
return status;
2023-08-31 13:21:49 +02:00
}
/*
* 1. map driver to memory
* 2. store executable sections in buffer
* 3. do the same with the in-memory module
2023-10-03 18:03:55 +02:00
* 4. hash both buffers
2023-08-31 13:21:49 +02:00
* 5. compare
*/
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
VerifyInMemoryImageVsDiskImage(
2023-10-05 08:27:17 +02:00
//_In_ PIRP Irp
2023-08-31 13:21:49 +02:00
)
{
2023-10-05 08:27:17 +02:00
NTSTATUS status;
UNICODE_STRING path = { 0 };
HANDLE section_handle = NULL;
PVOID section = NULL;
SIZE_T section_size = NULL;
SIZE_T bytes_written = NULL;
PVOID disk_buffer = NULL;
PVOID in_memory_buffer = NULL;
RTL_MODULE_EXTENDED_INFO module_info = { 0 };
UINT64 disk_base = NULL;
UINT64 memory_base = NULL;
PIMAGE_SECTION_HEADER disk_text_header = NULL;
PIMAGE_SECTION_HEADER memory_text_header = NULL;
PVOID disk_text_hash = NULL;
PVOID memory_text_hash = NULL;
ULONG disk_text_hash_size = NULL;
ULONG memory_text_hash_size = NULL;
SIZE_T result = NULL;
GetDriverPath(&path);
status = MapDiskImageIntoVirtualAddressSpace(
&section_handle,
&section,
&path,
&section_size
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("MapDiskImageIntoVirtualAddressSpace failed with status %x", status);
//TerminateProtectedProcessOnViolation();
return status;
}
status = StoreModuleExecutableRegionsInBuffer(
&disk_buffer,
section,
section_size,
&bytes_written
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("StoreModuleExecutableRegionsInBuffer failed with status %x", status);
//TerminateProtectedProcessOnViolation();
goto end;
}
/*
* Parse the in-memory module
*/
status = GetModuleInformationByName(
&module_info,
"driver.sys"
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("GetModuleInformationByName failed with status %x", status);
//TerminateProtectedProcessOnViolation();
goto end;
}
status = StoreModuleExecutableRegionsInBuffer(
&in_memory_buffer,
module_info.ImageBase,
module_info.ImageSize,
&bytes_written
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("StoreModuleExecutableRegionsInBuffe failed with status %x", status);
//TerminateProtectedProcessOnViolation();
goto end;
}
disk_base = (UINT64)((UINT64)disk_buffer + sizeof(INTEGRITY_CHECK_HEADER) + sizeof(IMAGE_SECTION_HEADER));
memory_base = (UINT64)((UINT64)in_memory_buffer + sizeof(INTEGRITY_CHECK_HEADER) + sizeof(IMAGE_SECTION_HEADER));
disk_text_header = (PIMAGE_SECTION_HEADER)((UINT64)disk_buffer + sizeof(INTEGRITY_CHECK_HEADER));
memory_text_header = (PIMAGE_SECTION_HEADER)((UINT64)in_memory_buffer + sizeof(INTEGRITY_CHECK_HEADER));
if (!disk_base || !memory_base || !disk_buffer || !in_memory_buffer)
{
DEBUG_ERROR("buffers are null lmao");
//TerminateProtectedProcessOnViolation();
goto end;
}
if (disk_text_header->SizeOfRawData != memory_text_header->SizeOfRawData)
{
/* report or bug check etc. */
DEBUG_LOG("Executable section size differs, LOL");
//TerminateProtectedProcessOnViolation();
goto end;
}
status = ComputeHashOfBuffer(
disk_base,
disk_text_header->SizeOfRawData,
&disk_text_hash,
&disk_text_hash_size
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("ComputeHashOfBuffer failed with status %x", status);
//TerminateProtectedProcessOnViolation();
goto end;
}
status = ComputeHashOfBuffer(
memory_base,
memory_text_header->SizeOfRawData,
&memory_text_hash,
&memory_text_hash_size
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("ComputeHashOfBuffer failed with status %x", status);
//TerminateProtectedProcessOnViolation();
goto end;
}
if (memory_text_hash_size != disk_text_hash_size)
{
DEBUG_ERROR("Error with the hash algorithm, hash sizes are different.");
//TerminateProtectedProcessOnViolation();
goto end;
}
result = RtlCompareMemory(
memory_text_hash,
disk_text_hash,
memory_text_hash_size
);
if (result != memory_text_hash_size)
{
/* report etc. bug check etc. */
DEBUG_ERROR("Text sections are different from each other!!");
//TerminateProtectedProcessOnViolation();
goto end;
}
DEBUG_LOG("Text sections are fine, integrity check complete.");
2023-09-01 12:56:27 +02:00
end:
2023-08-31 13:21:49 +02:00
2023-10-05 08:27:17 +02:00
if (section_handle != NULL)
ZwClose(section_handle);
2023-08-31 13:21:49 +02:00
2023-10-05 08:27:17 +02:00
if (section)
ZwUnmapViewOfSection(ZwCurrentProcess(), section);
2023-09-01 12:56:27 +02:00
2023-10-05 08:27:17 +02:00
if (disk_buffer)
ExFreePoolWithTag(disk_buffer, POOL_TAG_INTEGRITY);
2023-10-05 08:27:17 +02:00
if (in_memory_buffer)
ExFreePoolWithTag(in_memory_buffer, POOL_TAG_INTEGRITY);
2023-09-01 12:56:27 +02:00
2023-10-05 08:27:17 +02:00
if (memory_text_hash)
ExFreePoolWithTag(memory_text_hash, POOL_TAG_INTEGRITY);
2023-09-01 12:56:27 +02:00
2023-10-05 08:27:17 +02:00
if (disk_text_hash)
ExFreePoolWithTag(disk_text_hash, POOL_TAG_INTEGRITY);
2023-09-01 12:56:27 +02:00
2023-10-05 08:27:17 +02:00
return status;
2023-08-31 18:42:38 +02:00
}
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
RetrieveInMemoryModuleExecutableSections(
2023-10-07 17:37:47 +02:00
_Inout_ PIRP Irp
2023-08-31 18:42:38 +02:00
)
{
2023-10-05 08:27:17 +02:00
NTSTATUS status;
SIZE_T bytes_written = NULL;
PVOID buffer = NULL;
RTL_MODULE_EXTENDED_INFO module_info = { 0 };
status = GetModuleInformationByName(
&module_info,
"driver.sys"
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("GetModuleInformationByName failed with status %x", status);
return status;
}
status = StoreModuleExecutableRegionsInBuffer(
&buffer,
module_info.ImageBase,
module_info.ImageSize,
&bytes_written
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("StoreModuleExecutableRegionsInBuffe failed with status %x", status);
return status;
}
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
Irp->IoStatus.Information = bytes_written;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
RtlCopyMemory(
Irp->AssociatedIrp.SystemBuffer,
buffer,
bytes_written
);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
if (buffer)
ExFreePoolWithTag(buffer, POOL_TAG_INTEGRITY);
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
return status;
2023-09-03 19:33:27 +02:00
}
2023-09-04 15:36:26 +02:00
/*
2023-10-03 18:03:55 +02:00
* From line 727 in the SMBIOS Specification:
*
2023-09-04 15:36:26 +02:00
* 727 <EFBFBD> Each structure shall be terminated by a double-null (0000h), either directly following the
* 728 formatted area (if no strings are present) or directly following the last string. This includes
* 729 system- and OEM-specific structures and allows upper-level software to easily traverse the
2023-10-03 18:03:55 +02:00
* 730 structure table. (See structure-termination examples later in this clause.)
*
2023-09-05 11:16:32 +02:00
* TLDR is that if the first two characters proceeding the structure are null terminators, then there are no strings,
2023-09-04 15:36:26 +02:00
* otherwise to find the end of the string section simply iterate until there is a double null terminator.
2023-10-03 18:03:55 +02:00
*
2023-09-04 15:36:26 +02:00
* source: https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_2.7.1.pdf
*/
2023-09-27 06:22:14 +02:00
STATIC
2023-10-03 18:03:55 +02:00
VOID
2023-09-27 06:22:14 +02:00
GetNextSMBIOSStructureInTable(
2023-10-07 17:37:47 +02:00
_Inout_ PSMBIOS_TABLE_HEADER* CurrentStructure
2023-09-04 15:36:26 +02:00
)
{
2023-10-05 08:27:17 +02:00
PCHAR string_section_start = (PCHAR)((UINT64)*CurrentStructure + (*CurrentStructure)->Length);
PCHAR current_char_in_strings = string_section_start;
PCHAR next_char_in_strings = string_section_start + 1;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
for (;; )
2023-09-05 19:20:21 +02:00
{
2023-10-05 08:27:17 +02:00
if (*current_char_in_strings == NULL_TERMINATOR && *next_char_in_strings == NULL_TERMINATOR)
{
*CurrentStructure = (PSMBIOS_TABLE_HEADER)((UINT64)next_char_in_strings + 1);
return;
}
current_char_in_strings++;
next_char_in_strings++;
2023-09-05 19:20:21 +02:00
}
2023-09-04 15:36:26 +02:00
}
2023-09-04 17:00:36 +02:00
/*
2023-10-03 18:03:55 +02:00
* Remember that the string index does not start from the beginning of the struct. For example, lets take
2023-09-04 17:00:36 +02:00
* RAW_SMBIOS_TABLE_02: the first string is NOT "Type" at index 0, the first string is Manufacturer. So if we
* want to find the SerialNumber, the string index would be 4, as the previous 3 values (after the header) are
2023-10-03 18:03:55 +02:00
* all strings. So remember, the index is into the number of strings that exist for the given table, NOT the
2023-09-04 17:00:36 +02:00
* size of the structure or a values index into the struct.
2023-10-03 18:03:55 +02:00
*
2023-09-04 17:00:36 +02:00
* Here we count the number of strings by incrementing the string_count each time we pass a null terminator
* so we know when we're at the beginning of the target string.
*/
2023-09-27 06:22:14 +02:00
STATIC
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
GetStringAtIndexFromSMBIOSTable(
2023-10-05 08:27:17 +02:00
_In_ PSMBIOS_TABLE_HEADER Table,
_In_ INT Index,
_In_ PVOID Buffer,
_In_ SIZE_T BufferSize
2023-09-04 15:36:26 +02:00
)
{
2023-10-05 08:27:17 +02:00
INT current_string_char_index = 0;
INT string_count = 0;
PCHAR current_string_char = (PCHAR)((UINT64)Table + Table->Length);
PCHAR next_string_char = current_string_char + 1;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
for (;; )
{
if (*current_string_char == NULL_TERMINATOR && *next_string_char == NULL_TERMINATOR)
return STATUS_NOT_FOUND;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
if (current_string_char_index >= BufferSize)
return STATUS_BUFFER_TOO_SMALL;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
if (string_count + 1 == Index)
{
if (*current_string_char == NULL_TERMINATOR)
return STATUS_SUCCESS;
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
RtlCopyMemory((UINT64)Buffer + current_string_char_index, current_string_char, sizeof(CHAR));
current_string_char_index++;
goto increment;
}
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
if (*current_string_char == NULL_TERMINATOR)
{
current_string_char_index = 0;
string_count++;
}
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
increment:
2023-09-05 19:20:21 +02:00
2023-10-05 08:27:17 +02:00
current_string_char++;
next_string_char++;
}
2023-10-03 18:03:55 +02:00
2023-10-05 08:27:17 +02:00
return STATUS_NOT_FOUND;
2023-09-04 15:36:26 +02:00
}
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
ParseSMBIOSTable(
2023-10-05 08:27:17 +02:00
_In_ PVOID ConfigMotherboardSerialNumber,
_In_ SIZE_T ConfigMotherboardSerialNumberMaxSize
2023-09-04 15:36:26 +02:00
)
{
2023-10-05 08:27:17 +02:00
NTSTATUS status;
PVOID firmware_table_buffer;
ULONG firmware_table_buffer_size = NULL;
ULONG bytes_returned;
PRAW_SMBIOS_DATA smbios_data;
PSMBIOS_TABLE_HEADER smbios_table_header;
PRAW_SMBIOS_TABLE_01 smbios_baseboard_information;
status = ExGetSystemFirmwareTable(
SMBIOS_TABLE,
NULL,
NULL,
NULL,
&firmware_table_buffer_size
);
/*
* Because we pass a null buffer here, the NTSTATUS result will be a BUFFER_TOO_SMALL error, so to validate
* this function call we check the return bytes returned (which indicate required buffer size) is above 0.
*/
if (firmware_table_buffer_size == NULL)
{
DEBUG_ERROR("ExGetSystemFirmwareTable call 1 failed to get required buffer size.");
return STATUS_BUFFER_TOO_SMALL;
}
firmware_table_buffer = ExAllocatePool2(POOL_FLAG_NON_PAGED, firmware_table_buffer_size, POOL_TAG_INTEGRITY);
if (!firmware_table_buffer)
return STATUS_MEMORY_NOT_ALLOCATED;
status = ExGetSystemFirmwareTable(
SMBIOS_TABLE,
NULL,
firmware_table_buffer,
firmware_table_buffer_size,
&bytes_returned
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("ExGetSystemFirmwareTable call 2 failed with status %x", status);
goto end;
}
smbios_data = (PRAW_SMBIOS_DATA)firmware_table_buffer;
smbios_table_header = (PSMBIOS_TABLE_HEADER)(&smbios_data->SMBIOSTableData[0]);
/*
* The System Information table is equal to Type == 2 and contains the serial number of the motherboard
* in the computer among various other things.
*
* source: https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_2.7.1.pdf line 823
*/
while (smbios_table_header->Type != VMWARE_SMBIOS_TABLE)
GetNextSMBIOSStructureInTable(&smbios_table_header);
status = GetStringAtIndexFromSMBIOSTable(
smbios_table_header,
VMWARE_SMBIOS_TABLE_INDEX,
ConfigMotherboardSerialNumber,
ConfigMotherboardSerialNumberMaxSize
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("GetStringAtIndexFromSMBIOSTable failed with status %x", status);
goto end;
}
2023-09-04 15:36:26 +02:00
end:
2023-10-05 08:27:17 +02:00
if (firmware_table_buffer)
ExFreePoolWithTag(firmware_table_buffer, POOL_TAG_INTEGRITY);
2023-09-04 15:36:26 +02:00
2023-10-05 08:27:17 +02:00
return status;
2023-09-04 15:36:26 +02:00
}
2023-09-04 17:56:28 +02:00
/*
2023-09-05 11:16:32 +02:00
* Because the infrastructure has already been setup to validate modules in the driver, that
* is how I will validate the usermode modules as well. Another reason is that the win32 api
2023-10-03 18:03:55 +02:00
* makes it very easy to take a snapshot of the modules and enumerate them with easy to use
2023-09-05 11:16:32 +02:00
* functions and macros.
2023-10-03 18:03:55 +02:00
*
2023-09-05 11:16:32 +02:00
* 1. Take a snapshot of the modules in the process from our dll
* 2. pass the image base, image size and the image path to our driver via an IRP
* 3. from our driver, to first verify the in memory module, attach to our protected process
* and using the base + size simply use StoreModuleExecutableRegionsInBuffer()
* 4. Next we use the path to map the image on disk into memory, and pass the image to
* StoreModuleExecutableRegionsInBuffer() just as we did before.
* 5. With the 2 buffers that contain both images executable regions, we hash them and compare
* for anomalies.
2023-09-04 17:56:28 +02:00
*/
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
ValidateProcessLoadedModule(
2023-10-07 17:37:47 +02:00
_Inout_ PIRP Irp
2023-09-05 11:16:32 +02:00
)
2023-09-04 17:00:36 +02:00
{
2023-10-05 08:27:17 +02:00
NTSTATUS status;
BOOLEAN bstatus;
PROCESS_MODULE_VALIDATION_RESULT validation_result;
PPROCESS_MODULE_INFORMATION module_info;
PKPROCESS process;
KAPC_STATE apc_state;
PVOID in_memory_buffer = NULL;
PVOID disk_buffer = NULL;
PVOID in_memory_hash = NULL;
PVOID disk_hash = NULL;
ULONG in_memory_hash_size = NULL;
ULONG disk_hash_size = NULL;
SIZE_T bytes_written = NULL;
UNICODE_STRING module_path;
HANDLE section_handle = NULL;
PVOID section = NULL;
ULONG section_size = NULL;
module_info = (PPROCESS_MODULE_INFORMATION)Irp->AssociatedIrp.SystemBuffer;
GetProtectedProcessEProcess(&process);
/*
* Attach because the offsets given are from the process' context.
*/
KeStackAttachProcess(process, &apc_state);
status = StoreModuleExecutableRegionsInBuffer(
&in_memory_buffer,
module_info->module_base,
module_info->module_size,
&bytes_written
);
KeUnstackDetachProcess(&apc_state);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("StoreModuleExecutableRegionsInBuffer failed with status %x", status);
goto end;
}
status = ComputeHashOfBuffer(
in_memory_buffer,
bytes_written,
&in_memory_hash,
&in_memory_hash_size
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("ComputeHashOfBuffer failed with status %x:", status);
goto end;
}
RtlInitUnicodeString(&module_path, &module_info->module_path);
status = MapDiskImageIntoVirtualAddressSpace(
&section_handle,
&section,
&module_path,
&section_size
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("MapDiskImageIntoVirtualAddressSpace failed with status %x", status);
goto end;
}
status = StoreModuleExecutableRegionsInBuffer(
&disk_buffer,
section,
section_size,
&bytes_written
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("StoreModuleExecutableRegionsInbuffer 2 failed with status %x", status);
goto end;
}
status = ComputeHashOfBuffer(
disk_buffer,
bytes_written,
&disk_hash,
&disk_hash_size
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("ComputeHashOfBuffer 2 failed with status %x", status);
goto end;
}
if (!in_memory_hash || !disk_hash)
goto end;
bstatus = RtlEqualMemory(in_memory_hash, disk_hash, in_memory_hash_size);
/*
* Because each module is passed per IRP we don't need to send any reports
* to the queue we can simply pass it back to usermode via the same IRP.
* We also don't need to send any module information since usermode has everything
* needed to file the report.
*/
validation_result.is_module_valid = bstatus;
Irp->IoStatus.Information = sizeof(PROCESS_MODULE_VALIDATION_RESULT);
RtlCopyMemory(
Irp->AssociatedIrp.SystemBuffer,
&validation_result,
sizeof(PROCESS_MODULE_VALIDATION_RESULT)
);
2023-09-04 17:00:36 +02:00
end:
2023-10-03 18:03:55 +02:00
2023-10-05 08:27:17 +02:00
if (section_handle != NULL)
ZwClose(section_handle);
2023-10-05 08:27:17 +02:00
if (section)
ZwUnmapViewOfSection(ZwCurrentProcess(), section);
2023-09-04 17:00:36 +02:00
2023-10-05 08:27:17 +02:00
if (in_memory_buffer)
ExFreePoolWithTag(in_memory_buffer, POOL_TAG_INTEGRITY);
2023-09-05 11:16:32 +02:00
2023-10-05 08:27:17 +02:00
if (in_memory_hash)
ExFreePoolWithTag(in_memory_hash, POOL_TAG_INTEGRITY);
2023-09-04 17:00:36 +02:00
2023-10-05 08:27:17 +02:00
if (disk_buffer)
ExFreePoolWithTag(disk_buffer, POOL_TAG_INTEGRITY);
2023-10-05 08:27:17 +02:00
if (disk_hash)
ExFreePoolWithTag(disk_hash, POOL_TAG_INTEGRITY);
2023-10-05 08:27:17 +02:00
return status;
2023-09-06 17:33:08 +02:00
}
2023-09-06 17:44:57 +02:00
/*
* TODO: Query PhysicalDrive%n to get the serial numbers for all harddrives, can use the command
* "wmic diskdrive" check in console.
*/
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-09-27 06:22:14 +02:00
GetHardDiskDriveSerialNumber(
2023-10-07 17:37:47 +02:00
_Inout_ PVOID ConfigDrive0Serial,
2023-10-05 08:27:17 +02:00
_In_ SIZE_T ConfigDrive0MaxSize
2023-10-03 18:03:55 +02:00
)
2023-09-06 17:33:08 +02:00
{
2023-10-05 08:27:17 +02:00
NTSTATUS status;
HANDLE handle;
OBJECT_ATTRIBUTES attributes;
IO_STATUS_BLOCK status_block;
STORAGE_PROPERTY_QUERY storage_property = { 0 };
STORAGE_DESCRIPTOR_HEADER storage_descriptor_header = { 0 };
PSTORAGE_DEVICE_DESCRIPTOR device_descriptor = NULL;
UNICODE_STRING physical_drive_path;
PCHAR serial_number = NULL;
SIZE_T serial_length = NULL;
RtlInitUnicodeString(&physical_drive_path, L"\\DosDevices\\PhysicalDrive0");
InitializeObjectAttributes(
&attributes,
&physical_drive_path,
OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
NULL,
NULL
);
status = ZwOpenFile(
&handle,
GENERIC_READ,
&attributes,
&status_block,
NULL,
NULL
);
if (!NT_SUCCESS(status))
2023-09-06 17:33:08 +02:00
{
2023-10-05 08:27:17 +02:00
DEBUG_LOG("ZwOpenFile on PhysicalDrive0 failed with status %x", status);
goto end;
2023-09-06 17:33:08 +02:00
}
2023-10-05 08:27:17 +02:00
storage_property.PropertyId = StorageDeviceProperty;
storage_property.QueryType = PropertyStandardQuery;
status = ZwDeviceIoControlFile(
handle,
NULL,
NULL,
NULL,
&status_block,
IOCTL_STORAGE_QUERY_PROPERTY,
&storage_property,
sizeof(STORAGE_PROPERTY_QUERY),
&storage_descriptor_header,
sizeof(STORAGE_DESCRIPTOR_HEADER)
2023-09-06 17:33:08 +02:00
);
2023-10-05 08:27:17 +02:00
if (!NT_SUCCESS(status))
{
DEBUG_LOG("ZwDeviceIoControlFile first call failed with status %x", status);
goto end;
}
device_descriptor = ExAllocatePool2(POOL_FLAG_NON_PAGED, storage_descriptor_header.Size, POOL_TAG_INTEGRITY);
if (!device_descriptor)
{
status = STATUS_MEMORY_NOT_ALLOCATED;
goto end;
}
status = ZwDeviceIoControlFile(
handle,
NULL,
NULL,
NULL,
&status_block,
IOCTL_STORAGE_QUERY_PROPERTY,
&storage_property,
sizeof(STORAGE_PROPERTY_QUERY),
device_descriptor,
storage_descriptor_header.Size
);
if (!NT_SUCCESS(status))
{
DEBUG_LOG("ZwDeviceIoControlFile second call failed with status %x", status);
goto end;
}
if (device_descriptor->SerialNumberOffset > 0)
{
serial_number = (PCHAR)((UINT64)device_descriptor + device_descriptor->SerialNumberOffset);
serial_length = strnlen_s(serial_number, DEVICE_DRIVE_0_SERIAL_CODE_LENGTH) + 1;
if (serial_length > ConfigDrive0MaxSize)
{
DEBUG_ERROR("Serial length is greater then config drive 0 buffer size");
status = STATUS_BUFFER_TOO_SMALL;
goto end;
}
RtlCopyMemory(
ConfigDrive0Serial,
serial_number,
serial_length
);
}
2023-09-06 17:33:08 +02:00
end:
2023-10-05 08:27:17 +02:00
if (handle)
ZwClose(handle);
2023-09-06 17:33:08 +02:00
2023-10-05 08:27:17 +02:00
if (device_descriptor)
ExFreePoolWithTag(device_descriptor, POOL_TAG_INTEGRITY);
2023-09-06 17:33:08 +02:00
2023-10-05 08:27:17 +02:00
return status;
2023-09-28 09:15:47 +02:00
}
2023-10-03 17:23:01 +02:00
//VOID
//EnumeratePciDevices()
//{
// NTSTATUS status;
// PZZWSTR device_interfaces;
// PWSTR list_base;
// DEVPROPKEY key = { 0 };
// UNICODE_STRING symbolic_link = { 0 };
// WCHAR device_id[ 512 ];
// PZZWSTR current_string = NULL;
// SIZE_T string_length = 0;
//
// /* PCI guid */
// CONST GUID guid = { 0x5b45201d, 0xf2f2, 0x4f3b, 0x85, 0xbb, 0x30, 0xff, 0x1f, 0x95, 0x35, 0x99 };
//
// status = IoGetDeviceInterfaces(
// &guid,
// NULL,
// NULL,
// &device_interfaces
// );
//
// if ( !NT_SUCCESS( status ) )
// {
// DEBUG_LOG( "IoGetDeviceInterfaces failed with status %x", status );
// return;
// }
//
// current_string = device_interfaces;
//
// while ( *current_string != NULL_TERMINATOR )
// {
// string_length = wcslen( current_string );
//
// symbolic_link.Buffer = current_string;
// symbolic_link.Length = string_length;
// symbolic_link.MaximumLength = string_length;
//
// DEBUG_LOG( "Device Interface: %wZ", symbolic_link );
//
// current_string += symbolic_link.Length + 1;
// }
//
// ExFreePoolWithTag( device_interfaces, NULL );
//}
2023-10-02 16:31:30 +02:00
2023-10-03 18:03:55 +02:00
PVOID
2023-10-02 16:31:30 +02:00
ScanForSignature(
2023-10-05 08:27:17 +02:00
_In_ PVOID BaseAddress,
_In_ SIZE_T MaxLength,
_In_ LPCSTR Signature,
_In_ SIZE_T SignatureLength
2023-10-02 16:31:30 +02:00
)
{
2023-10-05 08:27:17 +02:00
CHAR current_char = 0;
CHAR current_sig_char = 0;
2023-10-02 16:31:30 +02:00
2023-10-05 08:27:17 +02:00
for (INT index = 0; index < MaxLength; index++)
2023-10-02 16:31:30 +02:00
{
2023-10-05 08:27:17 +02:00
for (INT sig_index = 0; sig_index < SignatureLength + 1; sig_index++)
{
current_char = *(PCHAR)((UINT64)BaseAddress + index + sig_index);
current_sig_char = Signature[sig_index];
2023-10-02 16:31:30 +02:00
2023-10-05 08:27:17 +02:00
if (sig_index == SignatureLength)
return (PVOID)((UINT64)BaseAddress + index);
2023-10-02 16:31:30 +02:00
2023-10-05 08:27:17 +02:00
if (current_char != current_sig_char)
break;
}
2023-10-02 16:31:30 +02:00
}
2023-10-03 17:23:01 +02:00
2023-10-05 08:27:17 +02:00
return NULL;
2023-10-02 16:31:30 +02:00
}
2023-10-02 18:44:59 +02:00
/*
* Lets ensure to the compiler doens't optimise out our useless instructions...
*/
2023-10-02 16:31:30 +02:00
#pragma optimize("", off)
STATIC
UINT64
MeasureInstructionRead(
2023-10-05 08:27:17 +02:00
_In_ PVOID InstructionAddress
2023-10-02 16:31:30 +02:00
)
{
2023-10-05 08:27:17 +02:00
CONST UINT64 start = __readmsr(IA32_APERF_MSR) << 32;
CHAR value = *(PCHAR)InstructionAddress;
return (__readmsr(IA32_APERF_MSR) << 32) - start;
2023-10-02 16:31:30 +02:00
}
#pragma optimize("", on)
2023-10-03 14:31:30 +02:00
STATIC
2023-10-03 18:03:55 +02:00
UINT64
2023-10-03 14:31:30 +02:00
MeasureReads(
2023-10-05 08:27:17 +02:00
_In_ PVOID Address,
_In_ ULONG Count
2023-10-02 16:31:30 +02:00
)
{
2023-10-05 08:27:17 +02:00
UINT64 read_average = 0;
UINT64 old_irql;
2023-10-02 16:31:30 +02:00
2023-10-05 08:27:17 +02:00
MeasureInstructionRead(Address);
2023-10-02 16:31:30 +02:00
2023-10-05 08:27:17 +02:00
old_irql = __readcr8();
__writecr8(HIGH_LEVEL);
2023-10-02 16:31:30 +02:00
2023-10-05 08:27:17 +02:00
_disable();
2023-10-02 16:31:30 +02:00
2023-10-05 08:27:17 +02:00
for (ULONG iteration = 0; iteration < Count; iteration++)
read_average += MeasureInstructionRead(Address);
2023-10-02 16:31:30 +02:00
2023-10-05 08:27:17 +02:00
_enable();
__writecr8(old_irql);
2023-10-02 16:31:30 +02:00
2023-10-06 09:02:10 +02:00
DEBUG_LOG("REad average: %llx", read_average);
2023-10-05 08:27:17 +02:00
return read_average / Count;
2023-10-02 16:31:30 +02:00
}
2023-10-03 16:11:27 +02:00
#define EPT_CHECK_NUM_ITERATIONS 30
#define EPT_CONTROL_FUNCTIONS_COUNT 4
#define EPT_PROTECTED_FUNCTIONS_COUNT 2
#define EPT_MAX_FUNCTION_NAME_LENGTH 128
#define EPT_EXECUTION_TIME_MULTIPLIER 10
2023-10-02 16:31:30 +02:00
/*
* Even though we test for the presence of a hypervisor, we should still test for the presence
2023-10-03 16:11:27 +02:00
* of EPT hooks on key functions as this is a primary method for reversing AC's.
2023-10-03 18:03:55 +02:00
*
* Credits to momo5502 for the idea: https://momo5502.com/blog/?p=255
*
2023-10-03 14:31:30 +02:00
* [+] EPT: Read average: 14991c28f5c2
* [+] no EPT: Read average: 28828f5c28
2023-10-03 18:03:55 +02:00
*
2023-10-03 14:31:30 +02:00
* On average a read when HyperDbg's !epthook is active is around ~125x longer. Will need to continue
* testing with other HV's, however it is a good start.
2023-10-02 16:31:30 +02:00
*/
2023-10-03 14:31:30 +02:00
STATIC
2023-10-02 16:31:30 +02:00
NTSTATUS
2023-10-03 16:11:27 +02:00
GetAverageReadTimeAtRoutine(
2023-10-06 09:02:10 +02:00
_In_ PVOID RoutineAddress,
2023-10-05 08:27:17 +02:00
_Inout_ PUINT64 AverageTime
2023-10-02 16:31:30 +02:00
)
{
2023-10-06 09:02:10 +02:00
if (!RoutineAddress || !AverageTime)
2023-10-05 08:27:17 +02:00
return STATUS_ABANDONED;
2023-10-02 16:31:30 +02:00
2023-10-06 09:02:10 +02:00
*AverageTime = MeasureReads(RoutineAddress, EPT_CHECK_NUM_ITERATIONS);
2023-10-02 16:31:30 +02:00
2023-10-06 09:02:10 +02:00
return *AverageTime == 0 ? STATUS_ABANDONED : STATUS_SUCCESS;
2023-10-03 14:31:30 +02:00
}
2023-10-02 16:31:30 +02:00
2023-10-03 14:31:30 +02:00
/*
* todo: encrypt both arrays
2023-10-03 18:03:55 +02:00
*
2023-10-03 14:31:30 +02:00
* The goal with the control functions is to find a reference time for an average read on a
* function that is not EPT hooked. To accomplish this I've selected some arbitrary, rarely
* used functions that shouldn't really ever have an EPT hook active on them. This will give
* us a baseline that we can then average out to find a relatively accurate average read time.
2023-10-03 18:03:55 +02:00
*
* From here, we have an array of protected functions which are commonly hooked via EPT to
2023-10-03 14:31:30 +02:00
* reverse anti cheats. We then check the read times of these functions and compare them to
* the average of the read times for the control functions. If the read threshold exceeds a
2023-10-03 18:03:55 +02:00
* multiple of 10, we can be fairly certain an EPT hook is active.
*
* Each time we measure the read we perform 30 iterations to ensure we get a consistent result
2023-10-03 14:31:30 +02:00
* aswell as disabling interrupts + raising IRQL to ensure the test is as accurate as possible.
2023-10-03 18:03:55 +02:00
*
* The following open source Intel VT-X hv's w/ EPT functionality have been tested and detected
2023-10-03 17:23:01 +02:00
* in a non vm environment:
2023-10-03 18:03:55 +02:00
*
2023-10-03 16:11:27 +02:00
* HyperDbg !epthook (https://github.com/HyperDbg/HyperDbg): detected
* DdiMon (https://github.com/tandasat/DdiMon): detected
2023-10-03 14:31:30 +02:00
*/
2023-10-05 08:27:17 +02:00
WCHAR CONTROL_FUNCTIONS[EPT_CONTROL_FUNCTIONS_COUNT][EPT_MAX_FUNCTION_NAME_LENGTH] =
2023-10-03 14:31:30 +02:00
{
2023-10-05 08:27:17 +02:00
L"RtlAssert",
L"PsAcquireSiloHardReference",
L"PsDereferencePrimaryToken",
L"ZwCommitEnlistment"
2023-10-03 14:31:30 +02:00
};
2023-10-02 16:31:30 +02:00
2023-10-05 08:27:17 +02:00
WCHAR PROTECTED_FUNCTIONS[EPT_PROTECTED_FUNCTIONS_COUNT][EPT_MAX_FUNCTION_NAME_LENGTH] =
2023-10-03 14:31:30 +02:00
{
2023-10-05 08:27:17 +02:00
L"ExAllocatePoolWithTag",
L"MmCopyMemory"
2023-10-03 14:31:30 +02:00
};
2023-10-02 16:31:30 +02:00
2023-10-06 09:02:10 +02:00
/*
* For whatever reason MmGetSystemRoutineAddress only works once, then every call
2023-10-06 10:30:14 +02:00
* thereafter fails. So will be storing the routine addresses in arrays since they
* dont change once the kernel is loaded.
2023-10-06 09:02:10 +02:00
*/
2023-10-06 10:30:14 +02:00
UINT64 CONTROL_FUNCTION_ADDRESSES[EPT_CONTROL_FUNCTIONS_COUNT] = { 0 };
UINT64 PROTECTED_FUNCTION_ADDRESSES[EPT_PROTECTED_FUNCTIONS_COUNT] = { 0 };
2023-10-06 09:02:10 +02:00
STATIC
NTSTATUS
InitiateEptFunctionAddressArrays()
{
UNICODE_STRING current_function;
for (INT index = 0; index < EPT_CONTROL_FUNCTIONS_COUNT; index++)
{
RtlInitUnicodeString(&current_function, CONTROL_FUNCTIONS[index]);
CONTROL_FUNCTION_ADDRESSES[index] = MmGetSystemRoutineAddress(&current_function);
if (!CONTROL_FUNCTION_ADDRESSES[index])
return STATUS_ABANDONED;
}
for (INT index = 0; index < EPT_PROTECTED_FUNCTIONS_COUNT; index++)
{
RtlInitUnicodeString(&current_function, CONTROL_FUNCTIONS[index]);
PROTECTED_FUNCTION_ADDRESSES[index] = MmGetSystemRoutineAddress(&current_function);
if (!PROTECTED_FUNCTION_ADDRESSES[index])
return STATUS_ABANDONED;
}
return STATUS_SUCCESS;
}
2023-10-03 18:03:55 +02:00
NTSTATUS
2023-10-03 14:31:30 +02:00
DetectEptHooksInKeyFunctions()
{
2023-10-05 08:27:17 +02:00
NTSTATUS status;
UINT32 control_fails = 0;
UINT64 instruction_time = 0;
UINT64 control_time_sum = 0;
UINT64 control_average = 0;
2023-10-06 09:02:10 +02:00
status = InitiateEptFunctionAddressArrays();
2023-10-03 14:31:30 +02:00
2023-10-06 09:02:10 +02:00
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("InitiateEptFunctionAddressArrays failed with status %x", status);
return status;
}
2023-10-03 14:31:30 +02:00
2023-10-06 09:02:10 +02:00
for (INT index = 0; index < EPT_CONTROL_FUNCTIONS_COUNT; index++)
{
2023-10-05 08:27:17 +02:00
status = GetAverageReadTimeAtRoutine(
2023-10-06 09:02:10 +02:00
CONTROL_FUNCTION_ADDRESSES[index],
2023-10-05 08:27:17 +02:00
&instruction_time
);
2023-10-02 16:31:30 +02:00
2023-10-05 08:27:17 +02:00
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("DetectEptPresentOnFunction failed with status %x", status);
control_fails += 1;
continue;
}
2023-10-03 14:31:30 +02:00
2023-10-05 08:27:17 +02:00
control_time_sum += instruction_time;
}
2023-10-03 14:31:30 +02:00
2023-10-06 09:02:10 +02:00
if (control_time_sum == 0)
2023-10-05 08:27:17 +02:00
return STATUS_UNSUCCESSFUL;
2023-10-03 14:31:30 +02:00
2023-10-05 08:27:17 +02:00
control_average = control_time_sum / (EPT_CONTROL_FUNCTIONS_COUNT - control_fails);
2023-10-03 14:31:30 +02:00
2023-10-06 09:02:10 +02:00
if (control_average == 0)
2023-10-06 10:30:14 +02:00
return STATUS_ABANDONED;
2023-10-03 14:31:30 +02:00
2023-10-05 08:27:17 +02:00
for (INT index = 0; index < EPT_PROTECTED_FUNCTIONS_COUNT; index++)
2023-10-03 14:31:30 +02:00
{
2023-10-05 08:27:17 +02:00
status = GetAverageReadTimeAtRoutine(
2023-10-06 09:02:10 +02:00
PROTECTED_FUNCTION_ADDRESSES[index],
2023-10-05 08:27:17 +02:00
&instruction_time
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("DetectEptPresentOnFunction failed with status %x", status);
continue;
}
/* [+] EPT hook detected at function: ExAllocatePoolWithTag with execution time of: 149b7777777 */
if (control_average * EPT_EXECUTION_TIME_MULTIPLIER < instruction_time)
{
2023-10-06 09:02:10 +02:00
DEBUG_LOG("EPT hook detected at function: %llx with execution time of: %llx",
PROTECTED_FUNCTION_ADDRESSES[index],
2023-10-05 08:27:17 +02:00
instruction_time);
/* close game etc. */
}
else
{
2023-10-06 09:02:10 +02:00
DEBUG_LOG("No ept hook detected at function: %llx", PROTECTED_FUNCTION_ADDRESSES[index]);
2023-10-05 08:27:17 +02:00
}
2023-10-03 14:31:30 +02:00
}
2023-10-05 08:27:17 +02:00
return status;
}
2023-10-03 14:31:30 +02:00
2023-10-05 08:27:17 +02:00
typedef struct _SYSTEM_START_OPTIONS
{
BOOLEAN test_signing;
}SYSTEM_START_OPTIONS, *PSYSTEM_START_OPTIONS;
STATIC
NTSTATUS
RegistryPathQueryTestSigningCallback(
IN PWSTR ValueName,
IN ULONG ValueType,
IN PVOID ValueData,
IN ULONG ValueLength,
IN PVOID Context,
IN PVOID EntryContext
)
{
PSYSTEM_START_OPTIONS context = (PSYSTEM_START_OPTIONS)Context;
UNICODE_STRING flag = RTL_CONSTANT_STRING(L"TESTSIGNING");
UNICODE_STRING key = RTL_CONSTANT_STRING(L"SystemStartOptions");
UNICODE_STRING data;
UNICODE_STRING value;
RtlInitUnicodeString(&value, ValueName);
if (RtlCompareUnicodeString(&value, &key, FALSE) == FALSE)
2023-10-03 14:31:30 +02:00
{
2023-10-05 08:27:17 +02:00
RtlInitUnicodeString(&data, ValueData);
DEBUG_LOG("SystemStartOptions: %wZ", data);
if (wcsstr(ValueData, flag.Buffer))
{
context->test_signing = TRUE;
return STATUS_SUCCESS;
}
2023-10-03 14:31:30 +02:00
}
2023-10-03 16:11:27 +02:00
2023-10-05 08:27:17 +02:00
return STATUS_SUCCESS;
2023-10-03 17:23:01 +02:00
}
2023-10-05 08:27:17 +02:00
2023-10-03 17:23:01 +02:00
NTSTATUS
2023-10-05 08:27:17 +02:00
DetermineIfTestSigningIsEnabled(
_Inout_ PBOOLEAN Result
)
2023-10-03 17:23:01 +02:00
{
2023-10-05 08:27:17 +02:00
NTSTATUS status;
SYSTEM_START_OPTIONS start_options = { 0 };
RTL_QUERY_REGISTRY_TABLE query_table[2] = { 0 };
UNICODE_STRING path = RTL_CONSTANT_STRING(L"Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control");
query_table[0].Flags = RTL_QUERY_REGISTRY_NOEXPAND;
query_table[0].Name = L"SystemStartOptions";
query_table[0].DefaultType = REG_SZ;
query_table[0].DefaultLength = 0;
query_table[0].DefaultData = NULL;
query_table[0].EntryContext = NULL;
query_table[0].QueryRoutine = RegistryPathQueryTestSigningCallback;
status = RtlxQueryRegistryValues(
RTL_REGISTRY_ABSOLUTE,
path.Buffer,
&query_table,
&start_options,
NULL
);
if (!NT_SUCCESS(status))
{
DEBUG_ERROR("RtlxQueryRegistryValues failed with status %x", status);
return status;
}
*Result = start_options.test_signing;
return STATUS_SUCCESS;
2023-09-04 17:00:36 +02:00
}